

FUNCTIONALITY OF CASEIN-RICH INGREDIENTS IN NUTRITIONAL PRODUCTS: UNDERSTANDING AND OPTIMIZATION

Thom Huppertz thom.huppertz@nizo.com 02/05/2017

INNOVATING TOGETHER

NIZO FOOD RESEARCH: FROM SCIENCE TO SOLUTIONS

CASEIN FUNCTIONALITY IN NUTRITIONAL PRODUCTS: PRODUCT-PROCESS INTERACTIONS

FROM SCIENCE TO SOLUTIONS: CASEIN MICELLES

- Industial focus on functionality
- Academic focus on physical and (bio)chemical properties
- Both primarily observational and explanatory on specific conditions
- Need integrated model to predict rather than explain functionality

A TYPICAL CASEIN MICELLE

Spherical

Diameter ~200 nm

Surface structure

75% moisture

23.5% protein

1.5% inorganic material (primarily Ca, PO₄)

~70,000 casein molecules, 1,400,000 calcium ions and 1,000,000 phosphate ions \rightarrow how to combine them to build a casein micelle

CASEIN MICELLES

- Casein micelles are a network of primary casein particles linked through calcium phosphate nanoclusters
- Inhomogeneous distribution of matter in casein micelles
- Changes in casein micelles because of:
 - Changes in casein-casein interactions
 - Changes in casein-nanocluster interactions
 - Changes in nanoclusters

CASEINS IN AN INDUSTRIAL PERSPECTIVE

The caseins are the same....

...only the concentrations and environment are different

THE CHANGING ENVIRONMENT

Yoghurt

High water
Low/intermediate protein
Low carbohydrate
Low pH

Low water High protein High carbohydrate Neutral pH

Milk

High water Low protein Low carbohydrate Neutral pH

Cheese

Intermediate water
High protein
Low carbohydrate
Low pH / High salt

Protein ingredients

No water
High protein
Low/high carbohydrate
Neutral pH / high salt

THE CHANGING ENVIRONMENT: NUTRITIONAL PRODUCTS

- Infant formula powders and liquids
 - Low in casein, high in whey protein
 - High fat:protein ratio
 - Fortification with minerals and minerals
- Clinical formula powders and liquids
 - High in protein
 - High in total solids
 - Fortification with minerals
- Different aspects important for powdered and liquid products
- Protein sources used are typically reconstituted powders and not liquids → is functionality maintained during ingredient manufacture?

FROM MILK TO MILK PROTEIN INGREDIENTS TO APPLICATION

- Need to understand milk proteins in milk before we can understand, control and tailor functional ingredients
- Understand the source material (milk) but also the production of the source material (physiology of lactation)

FROM MILK TO MILK PROTEIN INGREDIENT: MILK PROTEIN CONCENTRATES

• 32 commercial samples of MPC (collected from Europe, North & South America, Oceania)

Samples compared on basis of:

- Composition (gross composition, minerals, amino acids)
- Solubility (following 0, 6 and 12 months storage at 20°C)
- Powder properties (bulk density, particle size, dispersibility)
- Physicochemical properties (denaturation, lactosylation, pH)
- Functional properties (emulsification, foaming, gelation, heat stability, viscosity)

MILK PROTEIN INGREDIENTS: THE DIFFERENCES

• Comparison of these commercial samples reveals strong differences between products:

- Variation is not correlated to differences in composition
- Processing conditions were unknown
- How can these differences be explained?

SOLVING THE PROBLEMS: INSOLUBILITY DEVELOPMENT DURING DRYING

- •100% solubility of MPC up to 70% protein immediately after drying
- •Reductions in solubility during drying in MPC80-MPC90
- •Reduced solubility solely related to casein; whey proteins remain fully soluble!
- •Combination of high casein concentration, high temperature and high a[Ca]²⁺ results in casein micelle aggregation

HIGH PROTEIN DRINKS

Product composition

- •10% protein
- •10% fat
- •30% carbohydrate
- •~3% minerals/vitamins/etc

Product properties

- •Viscosity: 50-100 mPa.s (yoghurt-drink)
- •Shelf-stable for 6-12 months
- •No compromise on flavour/mouthfeel etc

Typical process

- Recombination of dry ingredients
- Homogenization
- UHT treatment and aseptic filling

Challenges on the protein ingredient:

- -Low viscosity
- -Good emulsification
- -Excellent heat stability
- -No flavor

PROTEIN INGREDIENTS FOR HIGH PROTEIN DRINKS

	Viscosity	Emulsification	Heat stability
MPC/MPI	Medium	Good	Medium/High
Na-caseinate	High	Good	High
Ca-caseinate	Low	Good	Medium
WPC/WPI	Low	Good	Low

- •Combination of low-viscosity with high heat stability not available in traditional range of ingredients
- Ingredients need to be optimized for application in high protein-drinks:
 - •Increased heat stability of calcium caseinate / whey protein ingredients
 - Reduced viscosity of sodium caseinate

LOW-VISCOUS HEAT-STABLE CASEINATE

- •Protein-corrected viscosity remains constant up to \sim 50 g L⁻¹ \rightarrow dispersion of protein particles
- •Protein-corrected viscosity increases strongly >50 g $L^{-1} \rightarrow$ polymer solution / network
- •Can caseinate structures at low concentration be stabilized to preserved viscosity at high concentration?

ENZYMATIC CROSS-LINKING OF CASEINS

- Transglutaminase (TGase) catalyzes formation of covalent iso-peptide bond between lysine and glutamine
- Caseins excellent substrates for TGase
- Effect on functionality of:
 - Casein micelles
 - Caseinates

Protein 2

FOR BETTER FOOD 6 HEALTH

VISCOSITY OF TGASE-TREATED SODIUM CASEINATE

- •Complete cross-linking of casein in all cases
- •<6% sodium caseinate → little effect of TGase treatment on viscosity
- •>6% sodium caseinate \rightarrow strong increase in viscosity \rightarrow possible use as viscosifying agents

CROSS-LINKED CASEINATE

EMULSION STABILITY IN HIGH PROTEIN DRINKS

- 'traditional ' creaming limited in high protein drinks due to low particle size and high viscosity
- At high volume fractions of protein particles and emulsion droplets, depletion flocclation become a driver for clustering of emulsion droplets and resultant creaming
- Control of particle sizes of emulsion droplets and protein particles crucial

INGREDIENT COMPATIBILITY: STABILITY OF INFANT FORMULA

- Infant formula:
 - Typically contains both milk powder and WPC as ingredients
 - Heat-load during infant formula manufacture can result in protein instability, leading to:
 - Insolubility
 - White flecks

RECONSTITUTION OF POWDERS

Wettability

- Particle level:
 - Surface composition
 - Wetting angle

Dispersibility

- Bulk level:
 - Capillary displacement
 - Particle size distribution
 - Pore size between particles
 - Capillary contraction

- Molecular level:
 - Fat
 - Protein
 - Carbohydrate

INSOLUBILITY DEVELOPMENT

Thermal	stability	of	skim	milk	concentrate/powder	a
---------	-----------	----	------	------	--------------------	---

Moisture content (%)	ISi ₀ (ml)	T (°C)	$t_{\rm ISi-0.3}$ (s)	
3	< 0.05	70	1.8×10 ⁵	
7	< 0.05	70	1.1×10^4	
3	< 0.05	100	1200	
7	< 0.05	100	720	
9	< 0.05	95	20	
12	< 0.05	95	<7	
14	8.5	_	-	
25	9.0	_	_	
35	< 0.05	_	-	
40	< 0.05	_	_	
50	< 0.05	85	275	
50	< 0.05	95	50	

 $^{{}^{}a}$ ISi₀ = insolubility index before heat treatment; $t_{ISi=0.3}$ = heat-holding time needed to increase ISi to a value of 0.3 ml.

- Protein aggregation as combination of:
 - High temperature
 - High protein
 - Low pH
 - High ionic strength
- In spray-dried emulsions, insolubility mas also show as aggregation of protein-stabilized emulsion droplets

INSOLUBILITY DEVELOPMENT: WHEN DOES IT HAPPEN

Moisture content (%)	$t_{\rm ISi-0.3}$ (s)
3	1.8×10 ⁵
7	1.1×10^{4}
3	1200
7	720
9	20
12	<7
14	_
25	_
35	_
40	_
50	275
50	50

Time to reach 0.3 mL insolubility in SMP at different temperatures

Time to reach 6 mL insolubility at 5°C for SMP (\square , \blacksquare) and MPC70 (\triangle)

- Rapid insolubility development between 70 and 90% dry matter for SMP and 45 60% dry matter for MPC70, i.e., at \sim 25-35% protein \rightarrow in the drying chamber
- Protein aggregation as combination of high temperature, high protein content, low pH, high ionic strength
- Contributory factors to insolubility the same as for heat stability
- At even higher solids content mobility sufficiently restricted to reduce/prevent aggregation

INSOLUBILITY: INDUCING EMULSION INSTABILITY

Heated dry (A_w ~0.2)

Heated wet $(A_w \sim 0.35)$

- Fleck formation largely caused by heat-induced emulsion destabilization
- Main contributors:
 - Heat stability of formulation
 - Heat-load during processing
 - Temperatures
 - Particle size

INGREDIENT COMPATIBILITY: STABILITY OF INFANT FORMULA

- Skim milk powder
 - Skim milk powder 1: ~50% whey protein denaturation (medium-heat)
 - Skim milk powder 2: ~95% whey protein denaturation (high-heat)
- Whey protein concentrate
 - Whey protein concentrate 1: ~20% whey protein denaturation
 - Whey protein concentrate 2: ~50% whey protein denaturation
- Behavior of blends vs. individual ingredients in relation to heat stability

INGREDIENT COMPATIBILITY: STABILITY OF INFANT FORMULA

- Heat stable SMP works does not give highest stability in combination with WPC
- Test in appropriate systems when selecting ingredients
- Combine ingredient functionality with ingredient compatibility

Casein functionality for nutritional products: from science to solutions

Fundamentals

Changes during processing

Environment for application

Compatibility

Characterization

Understanding

Optimization

Application

INNOVATING -TOGETHER

www.nizo.com