Lactose & GOS

Ken Burgess

Lactose: History & perspectives

1925

ADVANCED DAIRY CHEMISTRY

VOLUME 3

Lactose, Water, Salts and Minor Constituents THIRD EDITION

EDITED BY P.L.H. McSWEENEY AND P.F. FOX

2010

Lactose manufacture

Arla, 80,000 tonnes pa lactose plant

Lactose manufacture: Raw materials

Raw materials

% of TS	Whey	UF permeate
Lactose	72	83
Ash	8	9
Protein	12	3

Developments in lactose manufacture

Permeate softening: Novasep

Lactose manufacture: Yield improvement

(Relco)

Ken Burgess Associates

(Novasep)

Lactose yield improvement: Crystallac

Lactose yield improvement: Second crop

Lactose production

Lactose production (Source: Giract, 2014)

Year	Global production
2012	1,136 kt
2017 (f)	1,421 kt
CAGR (12-17)	5%

Lactose demand spikes		
Year	Demand driver	
1940's	Penicillin fermentation	
1999	Milk powder standardisation (Codex)	
2000's	Infant Formula	

Lactose

Galactose joined to glucose with a β 1-4 linkage

Two places in the lactose molecule are reactive and can be specifically modified:

- the carbonyl group and,
- the link between the glucose and galactose moieties.

- biological,
- biochemical,
- chemical

Lactose derivatives

Ken Burgess Associates

Shendurse & Khedkar, 2016

Oligosaccharides in human milk

General

- Abundant in human milk (8-15 g/L)
- >200 different oligosaccharides have been identified in human milk
- Trace levels in bovine milk/whey

Functions

- Neural development
- Prebiotics
- Protect against enteric infection

Component	Unit	Bovine	Human
Carbohydrate	g/L	48	70
Lactose	g/L	48	60
Oligosaccharides	g/L	Trace	8-15

International Journal of Dairy Technology (SDT)	SOCIETY OF DAIRY TECHNOLOGY
---	-----------------------------

doi: 10.1111/1471-0307.12209

Milk oligosaccharides: A review

REVIEW

DIANA L OLIVEIRA,^{1,2} R ANDREW WILBEY,¹ ALISTAIR S GRANDISON¹ and LUÍSA B ROSEIRO²*

¹Department of Food and Nutritional Sciences, University of Reading, Whiteknights Reading RG6 6AP, UK, and ²Laboratório Nacional de Energia e Geologia (LNEG), Unidade de Bioenergia, Edifício K2, Estrada do Paço do Lumiar 22, Lisboa 1649-036, Portugal

Galacto-oligosaccharide (GOS) production

Estimated annual production of Galacto-Oligosaccharides		
Year	Estimated production, tpa	Reference
1995	15,000	Sako et al (1999)
2004	12-14,000	Playne & Crittenden (2009)
2007	25,000	Paterson & Kellam (2009)
2009	21,000	Playne & Crittenden (2009)
2010 ^a	33-44,000	Paterson & Kellam (2009)
2013	94,100	Grand View Research (2015)
2020 ^a	175,700	Grand View Research (2015)

^a Forecasted value

Galacto-oligosaccharides (GOS)

- Galacto-oligosaccharides (GOS) are derived from lactose by the transgalactosylation reaction catalyzed by β-galactosidases.
- GOS are galactose-rich oligosaccharides consisting of 2-10 monosaccharides joined by different glycosidic linkages, often contain one glucose molecule

GOS production: β-galactosidase reactions

GOS production: reaction progress

Rodriguez-Colinas et al, 2016

Commercial GOS Products

GOS content of some commercial GOS products		
GOS product	% GOS of TS	
	Liquid	Powder
Oligomate 55N	55	
Oligomate 55NP		55
Vivinal GOS Syrup	59	
Vivinal GOS Powder		69
Bioligo GL 5700	57	
Cup-oligo H-70	70	
Cup-oligo P		70
Bimuno	52	
Bimuno		52
King Prebiotics GOS-570-S	57	

GOS process steps

- i) Raw materials (lactose, enzyme/s)
- ii) Lactose dissolving
- iii) Enzyme conversion
- iv) Impurity removal
- v) Fractionation
- vi) Evaporation

Raw Material: Edible lactose

Test	Specification
Lactose	min 99.0% in DM
Ash	max 0.3 %
Protein	max 0.3 %
рН	4.5 - 7.0
Colour	White/yellowish

Raw Material: β-galactosidase enzyme

Enzyme selection important for:

- overall GOS yield
- mix of oligosaccharides
- type of β -glycosidic bonds
- level of chemical impurities

Enzyme sources, examples		
Organism	Strain	
Bacteria	Bacillus circulans Bifidobacterium bifidum	
Yeasts	Kluyveromyces lactis Sporobolomyces singularis	
Moulds	Aspergillus niger Aspergillus oryzae	

Lactose solubility with temperature

Lactose dissolving

Process step	Inputs	Typical operating range
Lactose dissolving	Water, steam Lactose	90-95 C 55+% TS
pH adjustment	Citric acid/Na ₂ CO ₃	pH 4-7

Lactose dissolving/pH adjustment

Enzyme reactions

Process step	Inputs	Typical operating range
Cooling	Water jacket	50-60 C
Enzyme reaction	Enzyme addition	approx 2-5 hours (to end point)
Enzyme inactivation	Steam &/or Citric acid/Na ₂ CO ₃	95 C and/or pH adjustment

Reaction tanks

Purification of crude GOS

Technologies

Membrane filtration (UF)

Activated carbon

Ion exchange

Activated carbon treatment

Carbon mixing tank

Process step	Inputs	Typical operating range
Decolourisation	Activated carbon	90-95 C
Jecolounsation	Activated carbon	15-30 min
Protein precipitation	Citric acid	pH 4.5
Filtration	Filter aid	To clarity

Filtration

Colour range

GOS production: β-galactosidase reactions

Fractionation of GOS

Nanofiltration

Separation of GOS from residual lactose & glucose

Simulated moving bed chromatography

Yeast fermentation

Nanofiltration

Membrane separation of saccharides:

- Nanofiltration
- Diafiltration

GOS: Galacto-oligosaccharide Syrup

Evaporation to 75% TS

GOS	75% colida		~년 2 2
Syrup	75% 501105	50+% GOS	рп 3.2

Thank You

31