

SDT Study Tour, November 2011: Effluent Treatment Options Nigel Stevens, MSA Environmental Ltd

SDT Study Tour: Effluent Treatment Options

Think about untreated sewage..... For a moment!

Toilets? Smells? Flies? Pollution? Nasty Sludge?

Now think about wastewater from a cheese factory...

Effluent from a cheese factory is c. up to 10 times MORE polluting than untreated sewage!!!

Thus dairy effluent requires a large resource for effective treatment...

Even small cheese factories can produce more pollution than 10,000 people!!

Dairy Wastewater: Chemical Oxygen Demand (COD)

COD testing is quick and easy

- Dairies usually large volumes (c. 500 m³/day)
- High Strength (COD c. 3,000 mg/l)
- High Loadings (1,500 kgCOD/day)
- Large Population Equivalent (15,000pe)
- Large Environmental Impact

COD Chart – Some common products

Product	Approx. COD mg/l
Whole milk	220,000
Cream 50% BF	1,550,000
Custard	362,000
Coca-Cola	136,000
Diet Coke	2,400
Raw whey	82,000
Separated whey	62,000
Press whey	150,000
Whey concentrate (32% TS)	368,000
Whey cream	725,000
Whey buttermilk	42,000
Beer (IPA)	90,000

Effluent Discharge Options

Effluent Discharge Options

- Removal of land disposal (irrigation) option
- Tightening legislation on river discharges
- Greater risk of prosecution
- Tightening controls on sewer discharges
- Increased Trade Effluent Charges
- IPPC

Standard Trade Effluent Charges (2010/11)

Based on an effluent with a COD of 3,000 mg/l, and Suspended Solids of 800 mg/l

Trade Effluent Charges (2010/11)

Effluent Treatment Requirements

- None!! Now rare...your days are numbered!
- Balancing and pH correction
- Screening and solids removal
- Dissolved Air Flotation (widely used for dairy effluent)
- Biological treatment
 - Anaerobic
 - > Aerobic

Activated Sludge – Aerobic Treatment

- Robust and has large buffering capability
- Provides good effluent quality
- Minimal odours
- Large aeration tank footprint (typically 2 m³ for every kgCOD)
- Need to consider the biology for good settlement

MBR, Membrane Bioreactor – Aerobic Treatment

- Robust and has large buffering capability
- Provides superb effluent quality
- Minimal odours
- Small aeration tank footprint (typically 0.4 m³ for every kgCOD)
- Don't need to consider the biology?
- Water re-use possibilities....

Crossflow MBR: In to out flow...

MBR Crossflow plants

Submerged MBR: Out to in flow....

MBR submerged flat-sheet plants

Submerged vs. Crossflow MBR – which is best?

Crossflow (In to Out)

- Biomass is forced down membrane tubes (c. 5 to 8mm diameter)
- Permeate passes out of the membrane tubes into collection headers
- Critical to have good solids screening to avoid tube blockage
- Must maintain high "crossflow" velocities down the tubes to avoid fouling
- High crossflow velocity results in high energy cost
- Membrane failure results in solids being pushed from inside of tubes into permeate
- Membranes external to tank so very easy access for maintenance

Submerged (Out to In)

- Biomass is kept mixed within the MBR tank
- Permeate passes gently through from mixed liquor to collection header of the membrane sheets under gravity (or slight positive suction pressure)
- Risk of blockage is small as permeate stream has virtually no solids
- Simple air mixing/scour is used to keep outside of the membrane sheets clear
- Submerged structure so maintenance is not as straightforward

Submerged vs. Crossflow MBR

General Point

80% of all MBR plants installed in the USA are submerged type MBR

Flux Rates

- Crossflow much higher (2.9 m³/m²/day vs. 0.6 m³/m²/day for submerged)
- Submerged requires c. 5 times more membrane area

Capital Costs

- Price per m² is less for the submerged type
- All membrane capital costs have reduced exponentially over the past 20 years
- Prices for complete systems are now similar as membrane cost difference is offset by large pumps and lines & building requirements

Space Requirements

- Crossflow requires less for the membrane part
- But.... the bulk of the area required is for the aeration tanks
- Therefore, overall space requirement is similar

Submerged vs. Crossflow MBR

Energy Requirements

- Crossflow typically in the range 2.7 kWh/m³ to 5.0 kWh/m³
- Some contractors now quoting 2.0 kWh/m³
- Low Energy Crossflow 0.4 kWh/m³?
- Submerged typically 0.8 kWh/m³ to 1.2 kWh/m³
- 8 years data Almarai dairy (submerged MBR) 0.54 kWh/m³

Membrane Life Expectancy

- Crossflow typically 3 years (guarantee 1-2 years)
- Submerged typically 10 years (guarantee 3-4 years)
- Dairy Factory Example less than 100 Kubota membrane sheets out of 11,100 replaced in 6 years (0.9%)

MBR Option for Effluent Treatment - Summary

- Exciting "new" technology with new and retrofit applications
- Capital costs on a par with conventional treatment for new systems
- Revenue costs only marginally above conventional activated sludge
- Very low space requirements
- Excellent final effluent quality with potential for water re-use.....
- MBR systems should be considered for any new effluent project
- Should consider both crossflow and submerged types
- Should consider professional assistance with choice of plant, etc!

SDT Study Tour: Effluent Treatment Options

Thanks for your attention..... Any questions?

Nigel C A Stevens, Founder and Consultant

B.Sc., FCIWEM, C.WEM, C.Biol, C.ENV, MSBiol, MWEF

Tel: 01225 774 775 Mob: 07974 912 518

Web: www.go*msa*.co.uk

Email: nigel.stevens@go*msa*.co.uk