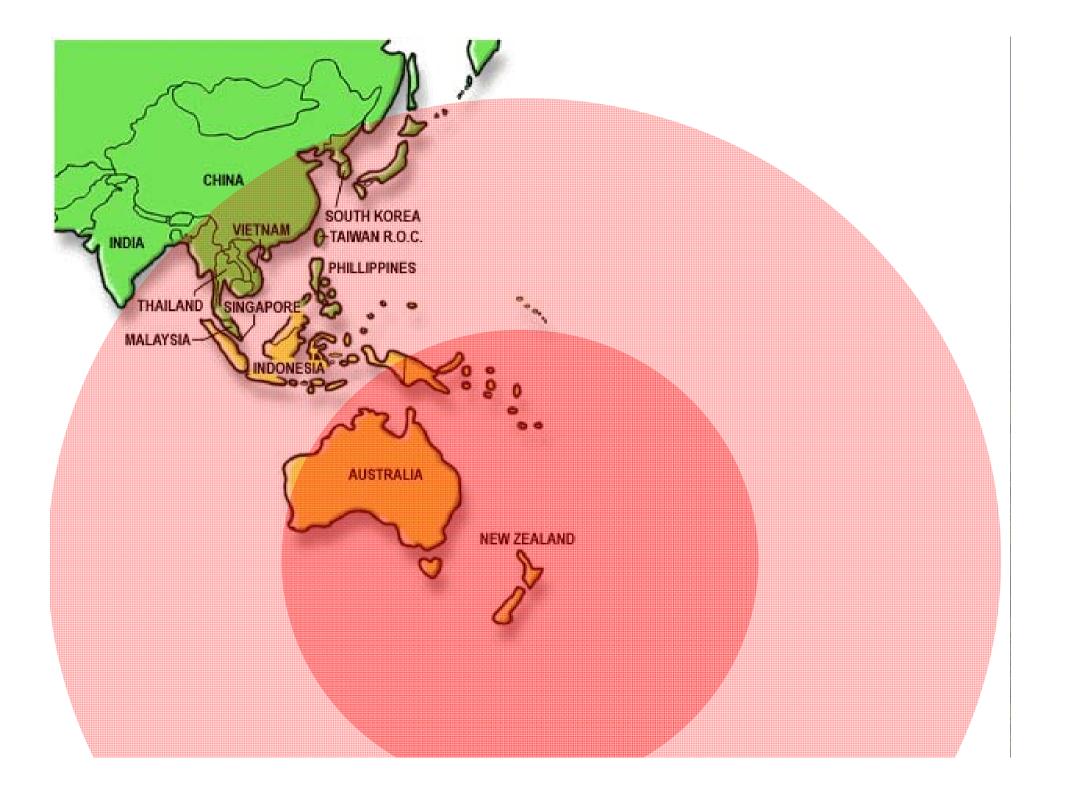
The Scale for Economic Milk Powder Production: A NZ Perspective

Barry Cole GEA Process Engineering

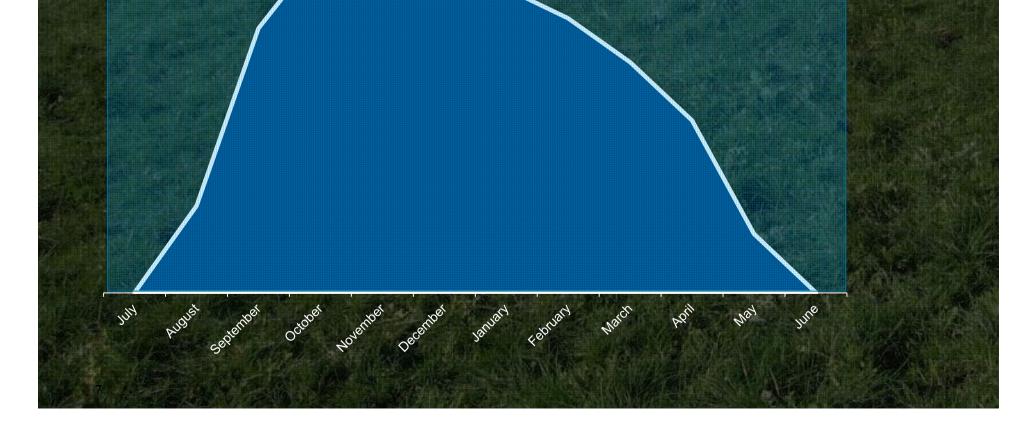

A world leader in liquid processing, drying, powder processing and handling

Agenda

Overview of NZ Milk Industry
 Trends in NZ Milk Powder Projects
 Optimimal Dryer Size
 Future?
 Questions & Discussion

New Zealand

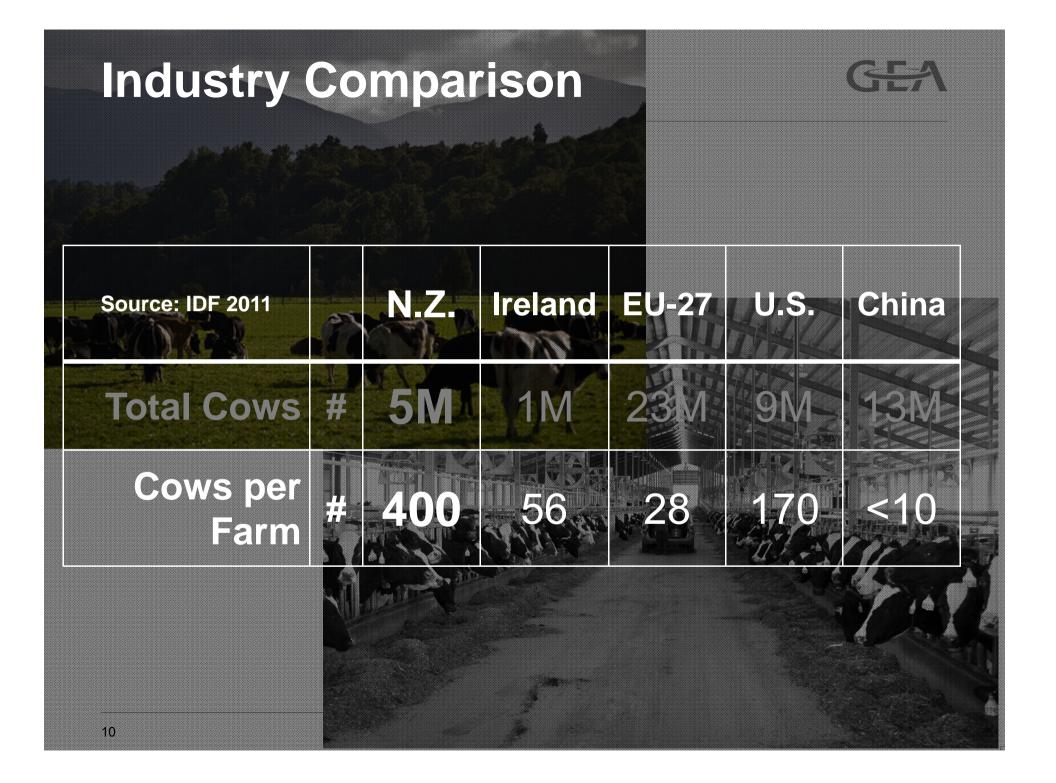
- Uninhabited until 800yrs ago
- Larger than Great Britain, with less population than Ireland.
- Farming and Tourism are the top income earners
 Located in a remote corner of the South Pacific

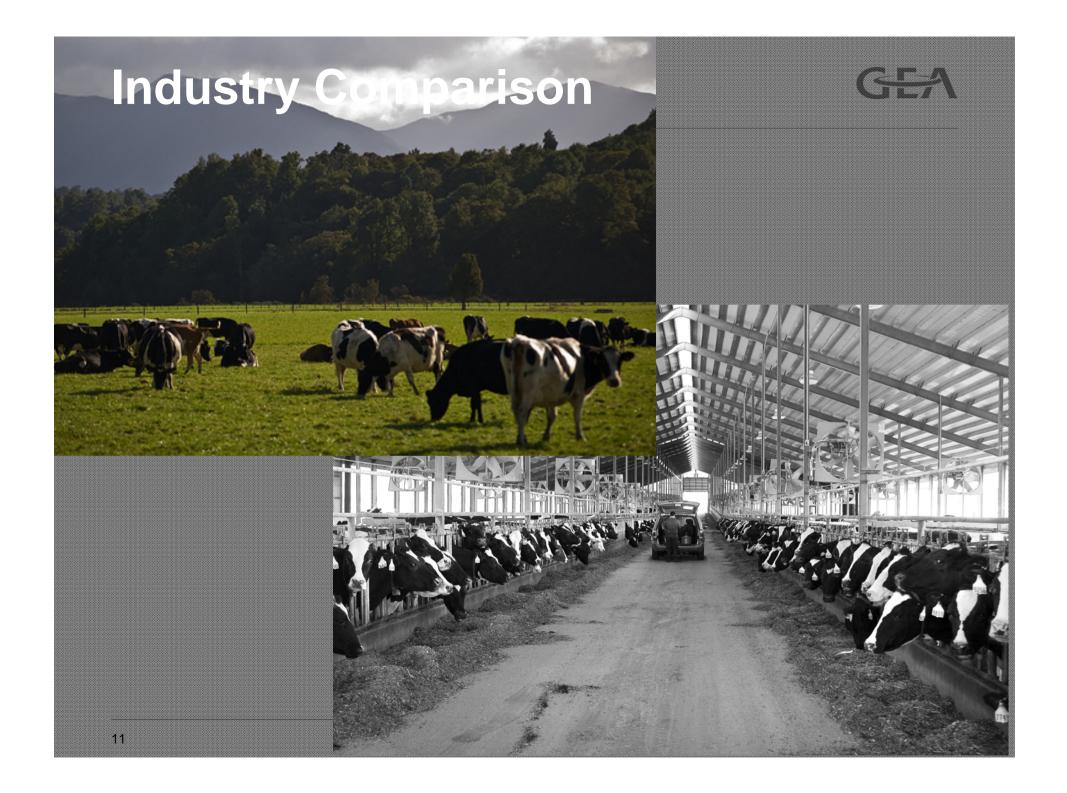


NZ / Ireland Dairy Comparison

	New Zealand	Republic of Ireland	
Population	4.4M	4.6M	
Mean Temp.	10-16°C	8-10°C	
Land Area	270,000km ²	70,000km ²	
Land in Pasture	135,000km ²	32,000km ²	
No. of Cows	<u>5M</u>	1M	
Milk Production	18.6MT/yr	5.5MT/yr	

NZ Dairy Processing Characterised by:

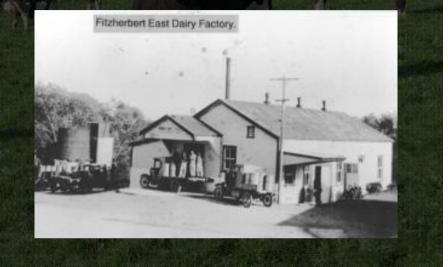

1. Pastoral based seasonal milk production



Industry Comparison

Total Milk ProductionTPY19M5.5M150M87M36MTotal CowsNo.5M1M23M9M13MCow YieldTPY3.65.36.59.62.8	Source: IDF 2011		N.Z. (2011/12)	Ireland	EU-27	U.S.	China
	and the second	TPY	19M	5.5M	150M	87M	36M
Cow Yield TPY 3.6 5.3 6.5 9.6 2.8	Total Cows	No.	5 M	1M	23M	9M	13M
	Cow Yield	TPY	3.6	5.3	6.5	9.6	2.8

NZ Dairy Processing Characterised by:1. Pastoral based seasonal milk production2. Large farms


NZ Dairy Processing Characterised by:

Pastoral based seasonal milk production
 Large farms

3. Large centralised processing sites

Consolidation of NZ Companies

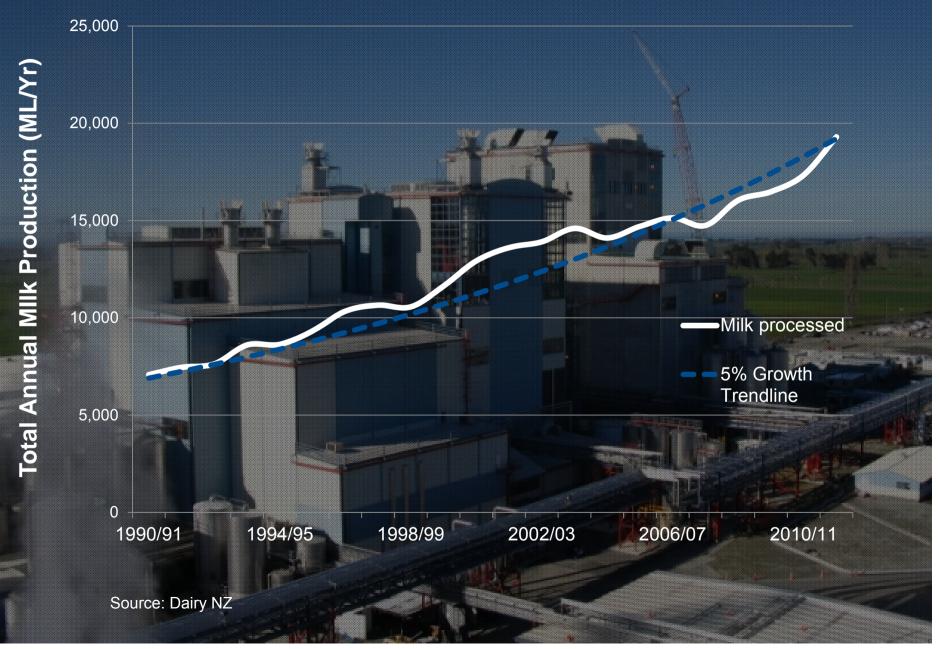
- 1930 400 Dairy Companies
- 1983 36 Dairy Companies
- 2001 3 Dairy Companies
- 2010 6 Dairy Companies
- 2012 8 Dairy Companies

NZ Dairy Companies

Fonterra Co-operative
 Open Country Ltd
 Westland Co-operative
 Synlait Ltd
 Miraka Ltd
 Tatua Co-operative
 Dairy Goat Co-operative
 Gardians Ltd

2010/11 Peak Milk (m³/day) 75,000 4,000 2,000 2,000 1,000 250 170

NZ Dairy Processing Characterised by: 1. Pastoral based seasonal milk production 2. Large farms 3. Large centralised processing 4. Milk Powder / Export Focus


Industry Comparison

Source: IDF 2011		N.Z.	Ireland	EU-27	U.S.	China
Total Milk Production	MT/yr	17	5.5	150	87	36
Milk to Milk Powder	%	60%	15%	10%	8%	25%
Milk to Export	%	95%	62%	10%	6%	0.2%
			- Reiter			

NZ Dairy Processing Characterised by:

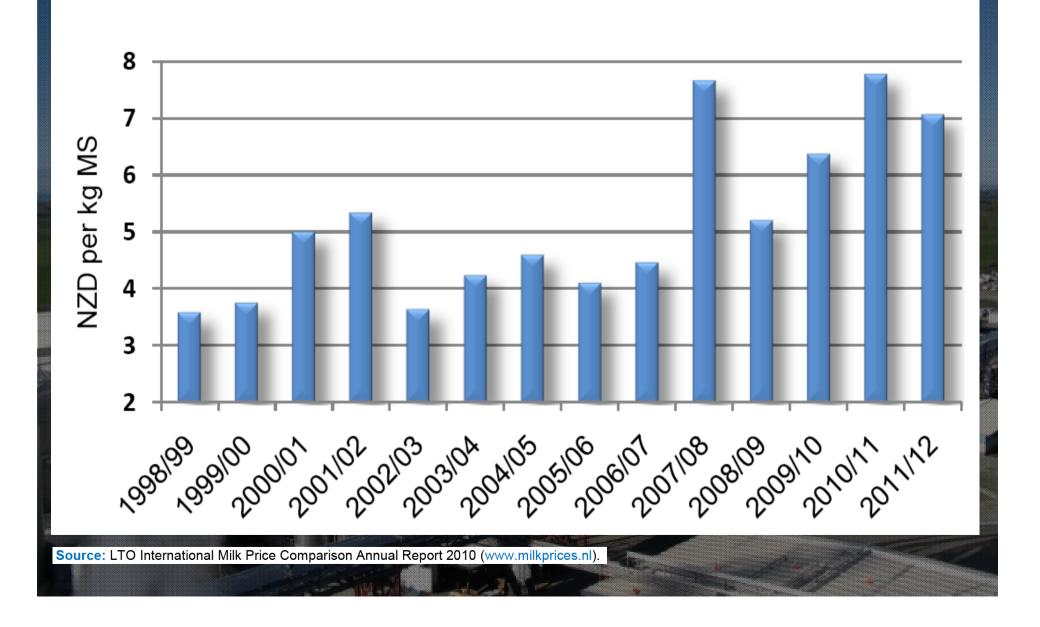
Pastoral based seasonal milk production
 Large farms
 Large centralised processing
 Milk Powder / Export Focus
 Strong Milk Growth

NZ Milk Production

NZ Milk Production

19,000 Million Litres/Year = 90 Million Litres/d Peak Milk

5% Growth = Extra 4.5 Million Litres at Peak each Year


This means New Factories must be built in NZ; 4x 8tph WMP Dryers or 2x 15tph WMP Dryers or 1x 30tph WMP Dryer ...each Year

NZ Milk Growth

DRIVERS: ↑Farmer Payments

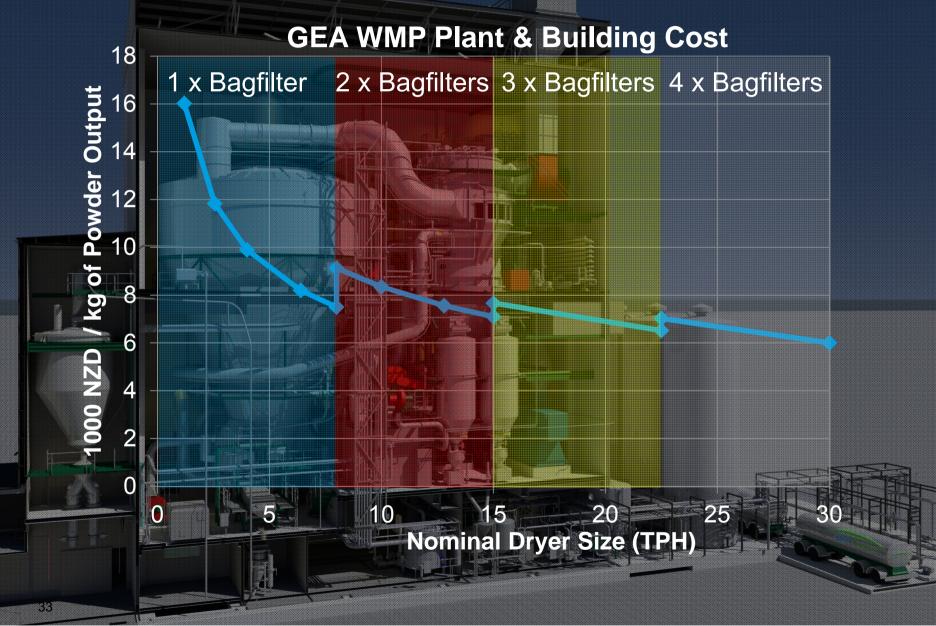
BARRIERS: .Water Supply .Environmental Impacts .Fonterra Share Cost .Alternative Land Use .Urbanisation .Land Cost

Fonterra Milk Payments

New Processing Plants - Trends

			Dryer	Supplier		Powder Rate
Year	Company	Site	Name	Company	Dryer Type	(TPH)
2001	Fonterra -	Clandeboye	P2	Niro	MSD 2000N	15
2001	Fonterra -	Lichfield	WPC	Stork	Widebody	2
2002	Fonterra -	Edendale	D2	Niro	MSD 2000N	15
2002	Westland -	Hokitika	D3	Stork	Widebody	7
2003	DGC -	Hamilton	D1	Niro	MSD 160N	1
2003	Fonterra -	Edendale	D3	Niro	MSD 2000N	15
2004	Fonterra -	Clandeboye	P3	Stork	Widebody	25
2005	Fonterra -	Te Awamutu	Dryer A	Stork	Widebody	9
2005	Fonterra -	Te Awamutu	Dryer B	Stork	Widebody	4
2006	Westland -	Hokitika	D6	Stork	Widebody	6
2007	NZ Dairies -	Waimate	D1	APV	Spray Bed	6
2007	OCD -	Awarua	D1	Niro	MSD 1000N	8
2007	OCD -	Waharoa	D2	Niro	MSD 1000N	8
2007	Synlait -	Dunsandel	D1	Niro	MSD 1000N	8
2008	OCD -	Wanganui	D1	Niro	MSD 1000N	8
2009	Fonterra -	Edendale	D4	Stork	Widebody	28
2010	Miraka -	Таиро	D1	Niro	MSD 1000N	8
 2011	Fonterra -	Darfield	D1	Niro	MSD 2000N	15
2012	Fonterra -	Darfield	D2	Niro	MSD 4000N	30
		A Shire and				•

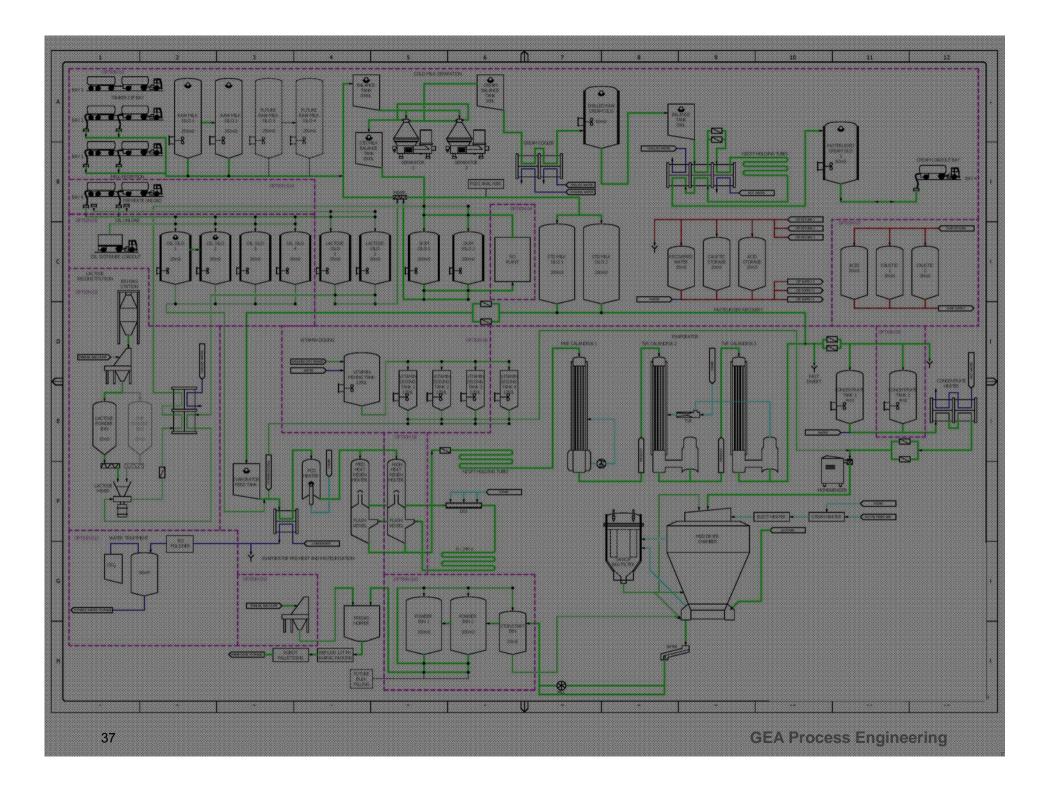
New Processing Plants - Trends New Start-up Companies •Limited Dairy Process Experience

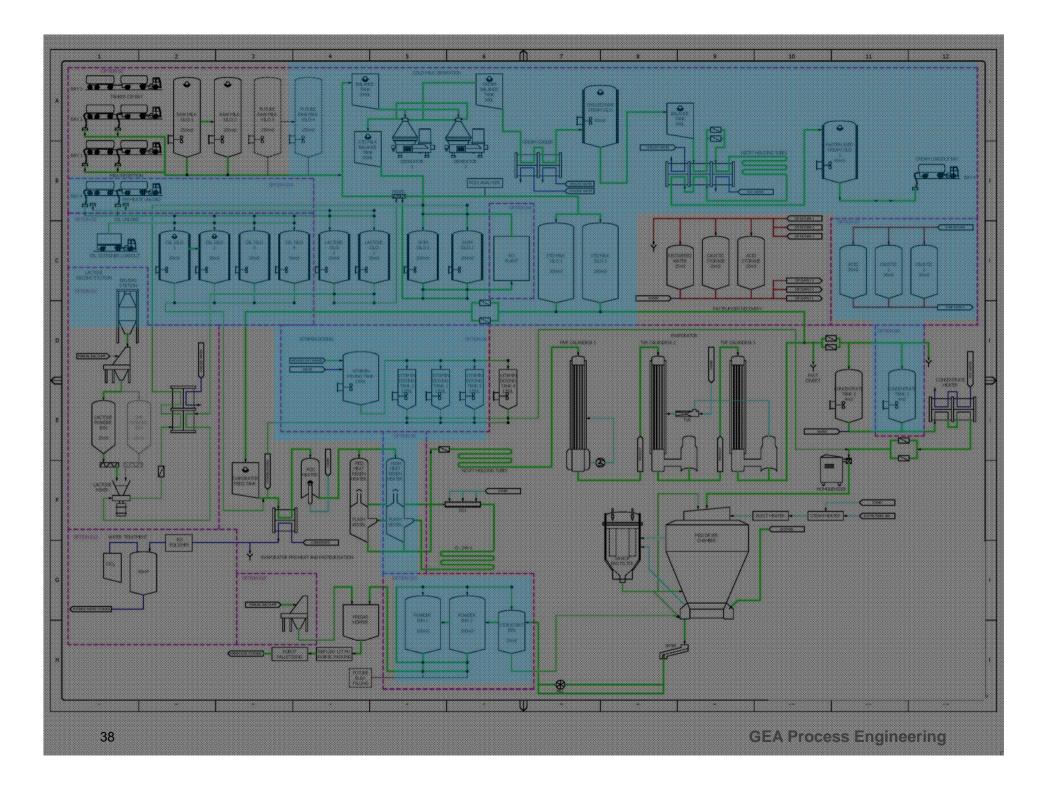

Elimited Dairy Process Experience
Financed by Overseas Investors
6-8tph Dryer Output
Fast-tracked Project <12months
Focus on Minimising Investment Cost

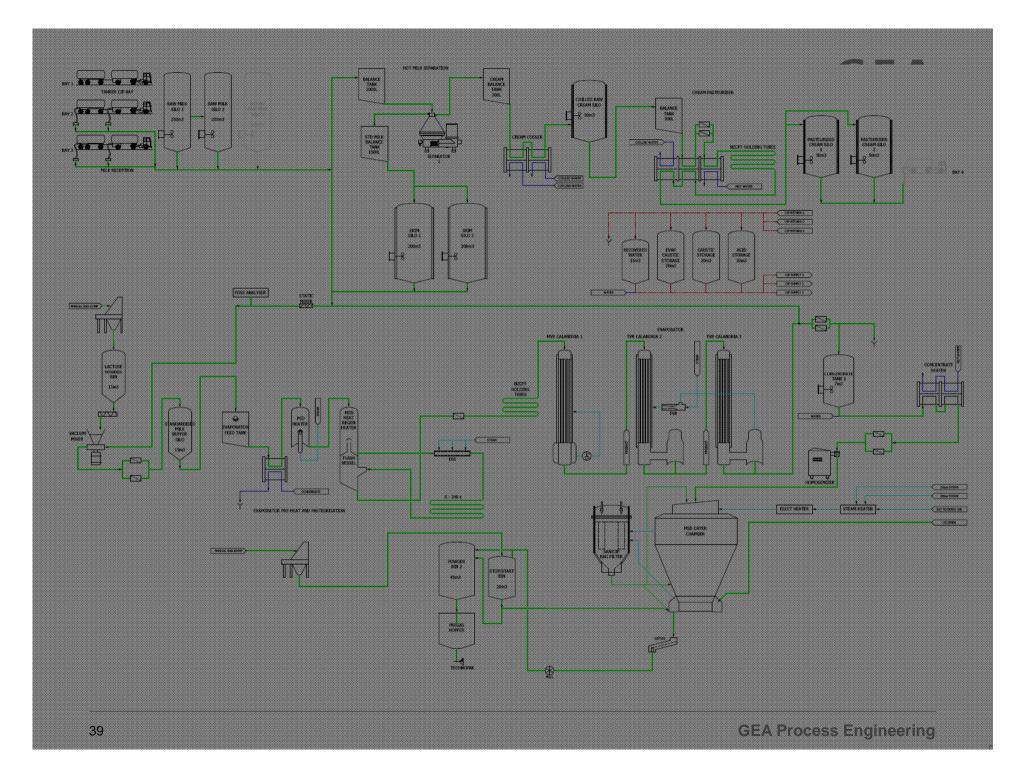
1. Choose a cost efficient size to minimise \$/T

New Processing Plants - Trends

				Dryer	Supplier		Powder Rate
	Year	Company	Site	Name	Company	Dryer Type	(TPH)
2	2001	Fonterra -	Clandeboye	P2	Niro	MSD 2000N	15
	2001	Fonterra -	Lichfield	WPC	Stork	Widebody	2
	2002	Fonterra -	Edendale	D2	Niro	MSD 2000N	15
	2002	Westland -	Hokitika	D3	Stork	Widebody	7
-	2003	DGC -	Hamilton	D1	Niro	MSD 160N	1
ź	2003	Fonterra -	Edendale	D3	Niro	MSD 2000N	15
	2004	Fonterra -	Clandeboye	P3	Stork	Widebody	25
	2005	Fonterra -	Te Awamutu	Dryer A	Stork	Widebody	9
	2005	Fonterra -	Te Awamutu	Dryer B	Stork	Widebody	4
	2006	Westland -	Hokitika	D6	Stork	Widebody	6
	2007	NZ Dairies -	Waimate	D1	APV	Spray Bed	6
	2007	OCD -	Awarua	D1	Niro	MSD 1000N	8
	2007	OCD -	Waharoa	D2	Niro	MSD 1000N	8
-	2007	Synlait -	Dunsandel	D1	Niro	MSD 1000N	8
	2008	OCD -	Wanganui	D1	Niro	MSD 1000N	8
-	2009	Fonterra -	Edendale	D4	Stork	Widebody	28
	2010	Miraka -	Таиро	D1	Niro	MSD 1000N	8
	2011	Fonterra -	Darfield	D1	Niro	MSD 2000N	15
	2012	Fonterra -	Darfield	D2	Niro	MSD 4000N	30
			the second se				


1. Choose a cost efficient size to minimise \$/T


2. Reduce # of products = reduced scope = reduced cost



- 1. Choose a cost efficient size to minimise \$/T
- 2. Reduce # of products = reduced scope = reduced cost
- 3. Reduce plant complexity

- 1. Choose a cost efficient size to minimise \$/T
- 2. Reduce # of products = reduced scope = reduced cost
- 3. Reduce plant complexity
- 4. Efficient and compact layout = reduced building cost

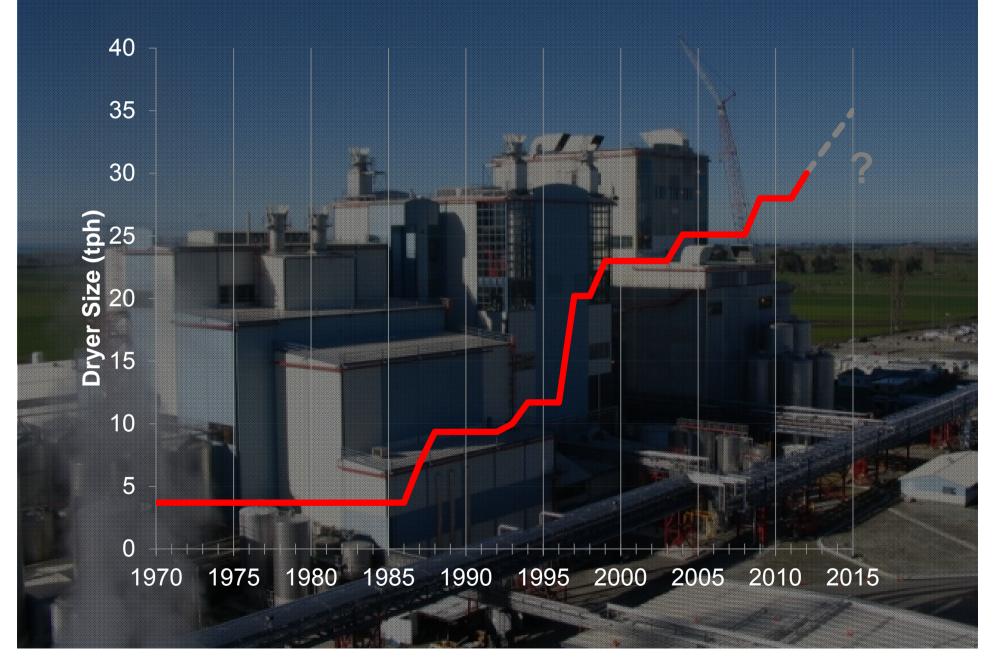
- 1. Choose a cost efficient size to minimise \$/T
- 2. Reduce # of products = reduced scope = reduced cost
- 3. Reduce plant complexity
- 4. Efficient and compact layout = reduced building cost
- 5. Use Standardised design

	Potential Savings
	%
Engineering	<mark>21</mark> %
Evaporator Equip.	0%
Dryer Equip.	7%
Powder Equip.	64%
Wet Process Equip.	53%
Services Equip.	50%
Electrical & Automation	32%
Plant Installation	36%
Building & Civil Works	22%
TOTAL	30%


OCD - Awarua

Year: 2007 Dryer: MSD 1000 = 8tph Products: WMP, IWMP Milk Capacity: 1.2ML/d Construction Time: 12months Scope: Milk Reception to Packing

OCD – Wanganui


Year: 2008 Dryer: MSD 1000 = 8tph Products: WMP, IWMP Milk Capacity: 1.2ML/d Construction Time: 10 months Scope: Milk Reception to Packing

New Processing Plants - Trends

				Dryer	Supplier		Powder Rate
	Year	Company	Site	Name	Company	Dryer Type	(TPH)
	2001	Fonterra -	Clandeboye	P2	Niro	MSD 2000N	15
	2001	Fonterra -	Lichfield	WPC	Stork	Widebody	2
	2002	Fonterra -	Edendale	D2	Niro	MSD 2000N	15
	2002	Westland -	Hokitika	D3	Stork	Widebody	7
	2003	DGC -	Hamilton	D1	Niro	MSD 160N	1
	2003	Fonterra -	Edendale	D3	Niro	MSD 2000N	15
	2004	Fonterra -	Clandeboye	P3	Stork	Widebody	25
	2005	Fonterra -	Te Awamutu	Dryer A	Stork	Widebody	9
	2005	Fonterra -	Te Awamutu	Dryer B	Stork	Widebody	4
	2006	Westland -	Hokitika	D6	Stork	Widebody	6
	2007	NZ Dairies -	Waimate	D1	APV	Spray Bed	6
	2007	OCD -	Awarua	D1	Niro	MSD 1000N	8
	2007	OCD -	Waharoa	D2	Niro	MSD 1000N	8
	2007	Synlait -	Duns andel	D1	Niro	MSD 1000N	8
	2008	OCD -	Wanganui	D1	Niro	MSD 1000N	8-
	2009	Fonterra -	Edendale	D4	Stork	Widebody	28
	2010	Miraka -	Taupo	D1	Niro	MSD 1000N	8
	2011	Fonterra -	Darfield	D1	Niro	MSD 2000N	15
	2012	Fonterra -	Darfield	D2	Niro	MSD 4000N	30
							•

Milk Powder Dryer Size Development in NZ

Disadvantages for Large Dryers Large Capital Expenditure Increased Milk Transport Costs Inefficient when operated part full Reduced Flexibility High Environmental Impact Large Displaced Milk Volumes during downtime

Drivers for Large Dryers

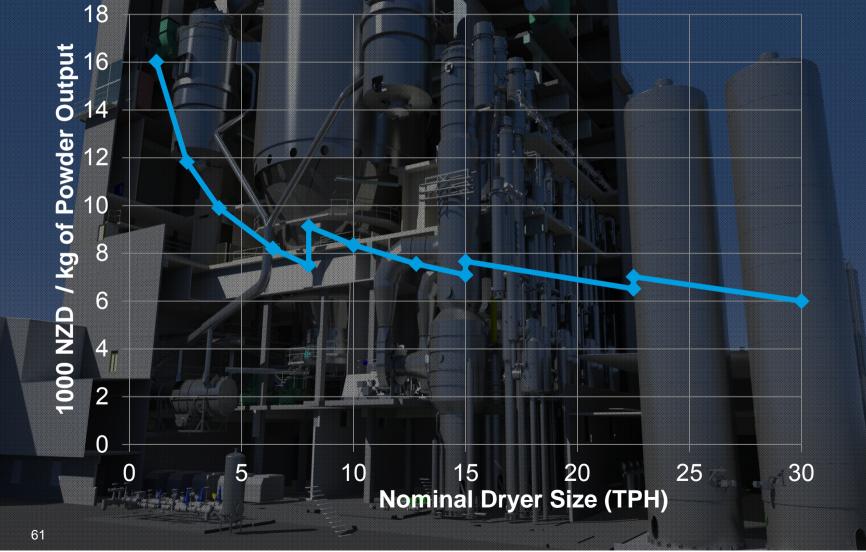
- NZ's 5% Milk Growth
- Intensive Milk Production Regions
- Single Product Processing Factories
- Continuous / Squared Curve Processing
- Focus on Total Cost of Ownership Approach

Total Cost of Ownership Approach

Capital Cost vs

Operating Cost
 Yields
 Project Safety
 Plant Operability
 Environmental Impact
 Plant Utilisation
 Risk

Risk Minimisation on Large Dryers


- Minimise Risk though Modularisation
 - Most areas can be copied from proven smaller plants
 - Only Dryer Chamber/SFB cannot be modularised
- Use conservative design for scale up
- Check design using CFD tools
- Drying dynamics become easier on larger chambers

Total Cost of Ownership Approach

Needs to be...1. Customer Driven2. Measureable3. Communicated Early

Optimum Dryer Size

8tph is minimum economic size for NZ

Optimum Dryer Size

8tph is minimum economic size for NZ

How much bigger depends on:
Existing Processor or New Entrant
Milk Growth Rate
Farm Density / milk collection costs
Labour Costs

Availability of finance

30tph is current maximum
No Engineering Reason why dryers cannot be bigger

Future Trends in NZ Milk Processing?

Short Term:Continued Milk Growth

• No Further Increase in Dryer Size

- Direct Investment by Overseas Companies China
- Larger 2nd Plants by New Entrants

Longer Term: • Stagnating Milk Growth • On going plant replacements / consolidation • New Technology

Focus on Energy Reduction

Conclusions

1. NZ Dairy growing at 5% over last 20yrs

2. Established Dairy Companies are;
• Building Large Plants to match milk growth
• Taking a total cost of ownerships approach

3. New Processors are;• Building smaller plants• Taking a Low Cost Approach

Questions & Discussion?

65