

Sustainable Energy Opportunities to Improve Competitive Positioning

The Technology Centre For Biorefining & Bioenergy

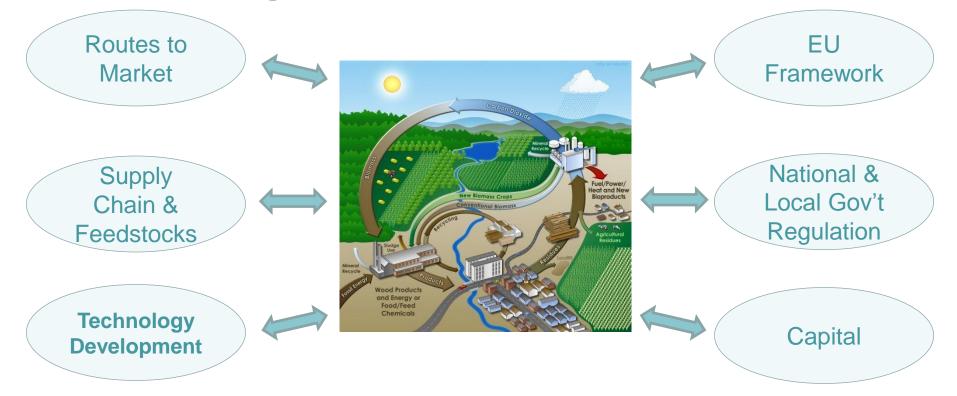
WWW.TCBB.IE

Sustainable Energy and Bio -Products from Biomass

Bart Bonsall – Technology Leader bart.bonsall@tcbb.ie

Technology Centre Overview

- An Industrial Development Programme funded by Enterprise Ireland & supported by IDA
- Centre Focus collaborative effort of Industrial, Academic and Government institutions to develop and exploit biorefining & bioenergy technologies
 - 12 Post Doctorate Research Staff
 - Supervised by 5 Professor / Sr Lecturer Principal Investigators
- Centre Membership Provides funding for research & commercial development targeted at bio-energy / biorefining issues
- Centre Structure Association of members established by agreement
 - Circa 20 Industry members from various industries
 - Currently Co-hosted by several Irish Universities



Biorefining & Bioenergy

AN ENTERPRISE IRELAND & IDA IRELAND INITIATIVE

Practical Applications to Improve Sustainability

Successful sustainable development requires integration of a number of elements

Getting started is key – modular model - build on success

Drivers Encourage Migration Toward Sustainable Modes of Production

•Global Drivers –

- Economic Imperative finite supply of fossil fuels drive price volatility
- Environmental Imperative climate change and/or health issues
- •EU & Irish Policy Drivers (Sustainable Development Strategy) Significant body of regulatory / policy initiatives provide increasing incentives Examples:
 - Renewable Energy Directives supported by NREAP's (*RES-E,H,T targets*)
 <u>REFIT tariffs -</u> premium for electricity generation from HE biomass CHP
 <u>Excise/carbon taxes</u> = pricing differential renewables vs fossil fuels (CNG)
 - Waste Management Directives Recycling & Waste Management Obligations
 <u>Landfill levy</u> = increasing cost for disposal of wastes in landfill
 - Air, water & soil quality measures
 - <u>Emissions trading scheme</u> Cap & Trade carbon emission certs

REFIT III Tariff

Key Market Stimulus

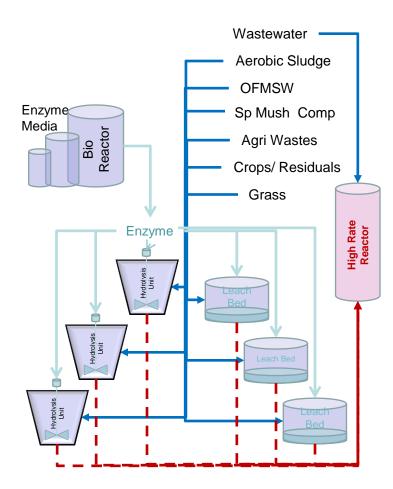
•REFIT = Premium Tariffs on "High Efficiency" Renewable Electricity

Mode	Rate / kWh
AD CHP < 500 kWh _e	€.15
AD CHP > 500 kWh _e	€.13
Biomass Combustion CHP < 1500 kWh _e	€.14
Biomass Combustion CHP > 1500 kWh _e	€.12

Renewable electricity generation produces: •30%-40% electricity •60% - 70% heat -40% - 50% recoverable

•Regulations require >75% use of input energy to qualify as HE •Process energy can be considered as useful heat – justification req'd –Rates are less than many EU countries – challenging environment –Requires monetisation of high % of heat energy value to be economical

Dairy processing industry can be key industry stakeholder - significant processing heat requirements



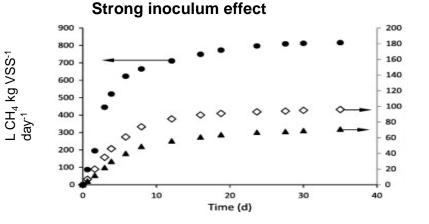
AN ENTERPRISE IRELAND & IDA IRELAND INITIATIVE

Multiple Feedstock Options

Wastes & Residuals	Current Market Circumstance
Organic Black/Brown Bin MSW	MBT& Landfilled @ significant disposal cost
Recovered Paper Waste (SRF)	Exported @ low value relative to potential
Cattle Slurry	Stored & landspread
Poultry Litter	Combusted or digested
Straw/Crop residuals	Mushroom compost/animal bedding
Spent Mushroom Compost	Landspread
Meat & Bonemeal	Shipped to NE or overseas to process
Agri Food Process Residuals	Large variety – disposal varies
Aerobic Sludges	Landspread/landfilled @ disposal cost
Energy Crops	Requires significant planting & development of market
Grass/Silage	Preference for use in Dairy/Beef Industry
Sugar Beet	Subject to Quota Renegotiation
Woody Biomass	Demand (1.5m M^3) outstrips supply (1.0m M^3)

Fragmented supply chain may require co-processing of feedstocks to improve production & economics – handling implications for some types of wastes

Technology Developments



•Low cost enzyme systems to break recalcitrant solids into easily processed liquids- enable coprocessing & expedite digestion / reduce residence time

•Integrated process flows to improve feedstock flexibility, cost & efficiency

- -Reduced operating temperatures
- -Increased tolerance to conditions
- -More productive

Engineering Developments – Anaerobic Digestion

Improved high rate AD reactors

Improved CHP efficiency

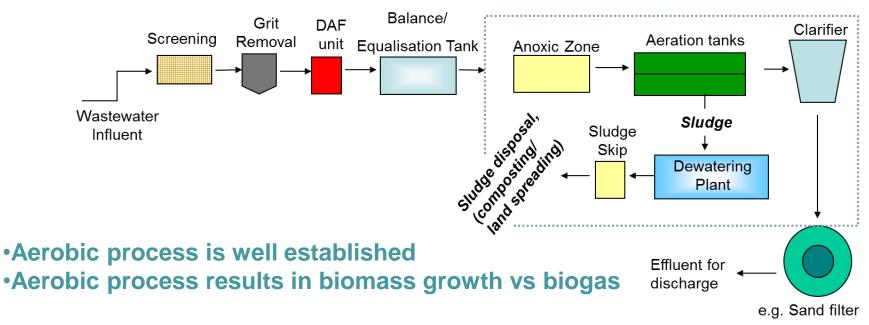
Modular low cost biogas upgrade units

Adoption of bi-fuel / NGV transport

Market Opportunities

In context of capital investment driven by production intensification together with market developments offer opportunities to reduce energy and/or waste processing costs

Most immediate possibilities:

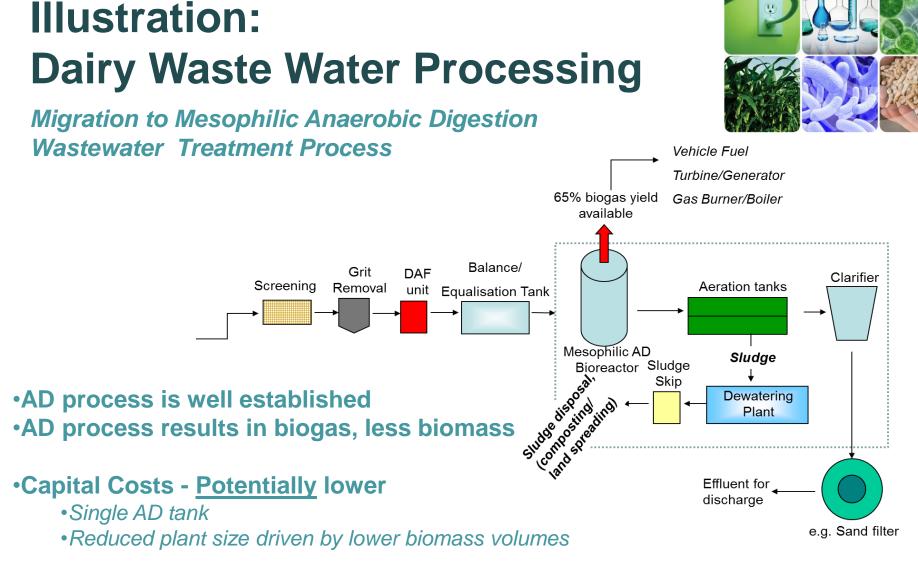

Processing Plant Waste-to-energy Anaerobic Digestion

- •Biogas for heating / cooling
- •Biogas for CHP
- •Biogas for CNG transport fuel

Collaborative Projects with:

- •Biomass CHP
- •Thermal Processing MSW CHP
- •Farm Based Anaerobic Digestion

Conventional Aerobic Waste Water Treatment Process


Capital Costs

Multiple tanks for anoxic cycling from aerated to non aerated
Larger tank sized for larger biomass processing volumes

Operating Costs - no realisation of waste-to-energy value

- Energy cost of aeration / biomass movement thru process
- •Disposal (transport) costs re land spreading biomass volumes
- Increased plant costs from increased plant size

•Operating Costs - <u>Potentially</u> reduced – realisation of excess energy value

•Lower energy cost of biomass movement thru process & reduced plant costs -smaller plant

•Lower biomass volumes results in low sludge disposal costs

Hypothetical Plant: Comparison of Aerobic vs Anaerobic WWT

Operating Assumptions Aerobic Anaerobic 120,000 M³ 120,000 M³ Avg milk consumption per annum 300,000 M³ 300,000 M³ Avg waste water produced per annum Avg COD removed -4,000 mg/ltr 1,200,000 kg 1,200,000 kg 660,000M³ Avg Biogas produced -.55 M³/Kg COD removed 396,000M³ Avg CH₄ (60%) = .33 M³/Kg COD removed Avg LHV of Biogas @ .0223 GJ/M³ 4,089 MWh_T Avg LHV of Upgraded Bio CH₄ @ .0361 GJ/M³ 3,971 MWh_τ (1,500) MWh_T Avg Thermal Energy utilised in AD process (approx 33%) MWh_T Avg Biomass sludge into dewatering @ 1% Dry Solids 30,000 M³ 7,500 M³ 1,500 M³ Avg dewatered Biomass sludge for disposal @ 20% Dry Solids

Source: TCBB process data and process estimates

Health Warning – Actual Results Dependent on Numerous Factors

•Feedstock composition, variability and availability

•Plant configuration, process flow & operating parameters

• IPPC licence conditions & market conditions

Hypothetical Plant : Comparison of Aerobic vs Anaerobic WWT

Estimated Incremental Capital Costs - € 000's	Aerobic	Anaerobic
Prelim/Primary - Screening, Grit Removal, DAF, Balance/Equal tanks = €1.5 / M ³ WW capacity	Common	Common
Aerobic Secondary - 2X400 M ³ Denitrification tanks, 1 X 1,500 M ³ aeration tank, 2 X 500 M ³ settlement tanks, centrifuge & dewatering	1,500	
Anaerobic Secondary - 1X400 M ³ Digestor, 1 X 400 M ³ aeration tank, 2 X 250 M ³ settlement tanks, small centrifuge & dewatering		1,000
Tertiary	Common	Common
Estimated Savings re Anaerobic Capital Costs	(500)	

Estimated Incremental Annual Op. Costs - €000's	Aerobic	Anaerobic
Plant Costs – maint/insurance/elect etc	60	30
Process Materials - pH / P removal (lime/caustic/polymer etc)	46	46
Labour – 1 man yr incl burden	44	44
Biomass Sludge disposal @ €65 per M ³	97	-
Subtotal	247	120
Estimated savings re Annual Anaerobic Operating Costs	(127)	

Extracting Energy Value – Biogas for Heating/Cooling

SEAI Avg. Gas Price – 2nd Half 2011

Band	Range-MWh	€/MWh*
l1	<278	50.40
12	278-2.8k	45.80
13	2.8k-28k	39.50
14	28k-278k	27.00

*SEAI Report - Excludes VAT

•Use of biogas for steam -

Small steam boiler optimised for biogas
Minor gas scrubbing for use w/

boiler – (burner spec ?)

- Can be used for low grade process heat / absorption cooling
- •Assume recovery of low grade process heat for AD process

Comparative Capital Cost € 000's Euros		
Capital Cost Savings – Anaerobic	(500)	
Incr. Capital – Gas Steam Gen	100	
Net Savings	(400)	
Comparative Annual Op Costs € 000's Euros		
Op Cost savings – Waste	(127)	
Energy Value – 4,089 MWh _T @ € 39.50 per MWh _T	(162)	
Incremental Op Cost – Energy	20	
Net Savings per annum	(269)	

Extracting Energy Value – Biogas for Combined Heat and Power (CHP)

SEAI Avg. Elect. Price – 2nd Half 2011

Band	Range-MWh	€/MWh*
IA	<20	198.30
IB	20-500	150.60
IC	500-2k	129.40
ID	2k-20k	97.70
IE	20k-70k	85.60

*SEAI Report - Excludes VAT

Assume in house use of electricity

•Grid connection – may earn REFIT tariff of €150.00 per Mwh_e

- -Generates added revenue (€30K)
- -Incurs grid connection costs
- Use of recovered heat for process heating / cooling may add an additional €50K value pa

Comparative Capital Cost € 000's Euros		
Capital Cost Savings – Anaerobic	(500)	
Incr. Capital – 200kWh _e CHP	300	
Net Savings	(200)	
Comparative Annual Op Costs € 000's Euros		
Op Cost Savings – Waste	(127)	
Electric Value 4,089 MWh _⊤ @ 35%=1,431 MWh _e @ € 129.40	(185)	
Thermal Value 4,089 @40%=1,635 assume all used for AD process	-	
Incremental Op Cost – CHP	40	
Net Savings per annum	(272)	

Extracting Energy Value – Biogas for Transport

CNG Transport Fuel - 1 M^3 of CH_4 approx = 1 Ltr Diesel	€/Ltr
Diesel Price	€1.60
Less VAT @ 23%	.30
Less Excise/Carbon Tax	.48
Wholesale Diesel Cost	€ .82

•Need CNG Fleet

- Vehicle capital cost prem. (reducing)
- •Short haul fleet Itd.refueling options
- NGV's not quite as efficient as diesel

•Biogas upgrade & delivery

- •Multiple technologies available
- Specialist skill set
- •Signif'nt capital & op costs reducing

Comparative Capital Cost € 000's Euros		
Capital Cost Savings – Waste	(500)	
Capital – Vehicles 4@25K ea	100	
Capital – Gas Upgrade/Deliv'r	1,000	
Net Added Capital Cost	600	
Comparative Annual Op Costs € 000's Euros		
Comparative Op Costs – Waste	(127)	
Fuel Value – 396,000 M ³ (less 5%		
loss) @ €.82	(308)	
Incremental Op Cost – CH ₄ Upgr'd	150	
Net Savings per annum	(285)	

Transport Fuel Option more likely as part of larger collaborative project

Farm Based AD

Economics Specific to Circumstances

- Has to be tightly managed process
- Need route to market for value premium -
 - REFIT qualifying CHP route for monetisation of heat
 - Realisation of value as transport fuel
- Need minimum scale 10,000 15,000 DMT feedstock per annum
- Multiple Feedstocks -
 - Supplement Cattle slurries (very low biogas productivity)with:
 - Poultry Litter
 - Food Wastes or Agri Food Process Wastes (gate fee)
 - Digestible energy crop (biodiversity requirement?) cost issue

Farm based systems will benefit from technology development & access infrastructure

Thermal Processing Options

Pyrolysis & gasification facilitate use of agri / MSW solid wastes – can assist

emissions concerns

Advances in traditional biomass CHP generate higher energy recovery & greater efficiency, modular sizing improving economics

Thermal Processing Options

Solid Waste or Traditional Biomass Heat /CHP

- Economics specific to circumstances
 - Biomass boilers compete effectively with heating oil
 - Biomass CHP can be economical where low cost high energy fuel serves constant heat demand
 - Economics of biomass CHP improve with waste feedstock –(disposal cost avoidance circa €160/MT – gate fee/transport/levy)

ESCO contract – risk management & perception concerns

Collaborative Approach

Optimise Market Opportunities / Industry Development

- Develop Market Access Infrastructure
 - Biogas collection & upgrade networks gas grid injection
 - District Heating Network aggregate demand
- Clustering Approach Facilitate efficient production
 - Localised concentration efficient resource processing
- Leveraging significant technological developments & staff skills
- Catalyst for new industrial development biorefining
- Benefit from shared capital

Significant EU Support

•ERDF – EU Regional Development Funds (circa €600m 2014 - 2020)

- Currently in process of defining programme encourage Irish gov't to establish a bio-based infrastructure programme
- •PPP's whereby 50% public funding from ERDF is matched by private invest.
- •Examples:
 - -ERDF funded District Heating Scheme serviced by private CHP operators
 - -ERDF funded biogas collection & upgrading scheme serviced by private AD biogas generators

•Envisage 10 communities with €20M public funds each matched by €20 m private investment = significant development

DG Agriculture & Rural Development – Considering PPP Programme

- •EIBI programme aimed at large scale demonstration projects (€2Bn)
- •EU FP7 Projects Research projects & demonstration activities

Much of EU Support is Competitive - Oriented Towards SME's Consider How Projects are Structured

Biorefining & Bioenergy

AN ENTERPRISE IRELAND & IDA IRELAND INITIATIVE

Summary –

- •Are opportunities where sustainable options are economic to deploy
- In current environment these are specific to individual circumstances
- •Collaborative effort can stimulate market development

Sustainable Energy Opportunities to Improve Competitive Positioning

The Technology Centre For Biorefining & Bioenergy

WWW.TCBB.IE

Sustainable Energy and Bio -Products from Biomass

Bart Bonsall – Technology Leader bart.bonsall@tcbb.ie

