

Whey Protein Fortification of Food for Older People

Dr Lisa Methven

SCHOOL: OF DESIGN THE GLASGOW SCHOOL: PARE

Malnutrition (undernutrition): the magnitude of the problem

+ In 2007, 239 patients died <u>of</u> malnutrition in hospitals– this figure is only 0.5% of those who died <u>with</u> malnutrition (Lishman 2009)

+ Malnutrition costs the health care services > £7.3 Billion per year – half of which is spent on older people

 40% of older people are at risk of malnutrition whilst in hospital (BAPEN 2003)

 Those aged >80 years in hospital have 5 times the risk of those <50 years (BAPEN 2003)

Malnutrition: physical & psychological consequences

- Impairs immune function
 - Increasing susceptibility to infection and sepsis
- Wound healing
 - Increases the risk of pressure ulcers and delays wound healing
- Muscle wasting
 - Impairing respiratory and cardiac function, increased risk of pneumonia and cardiac failure
 - Reduced mobility, increasing risk of thromboembolism and pressure ulcers and delays return to full mobility
 - Sarcopenia
- Alters gastrointestinal structure and function
- Causes apathy and fatigue loss of morale & will to recover

Sarcopenia

- Loss of muscle mass & function
- Muscle atrophy (decreased size) & muscle fibres replaced by fat
- Impaired response of muscle protein synthesis from nutritional intake
- Muscle disuse a contributory factor

Malnutrition carousel of multiple admissions

More than just 'hospital food': Reading Factors contributing to malnutrition in older patients

Overview

- 1. Why fortify with Whey Protein?
- 2. What can be achieved?

4. What are the problems of high levels of inclusion?

Recommended daily intakes for older adults

Micronutrient	Government daily guidelines a		
Energy (kcal)	1955		
Protein (g)	50		
Fat (g)	<74.5		
Saturated fat(g)	<23.5		
Potassium (mg)	> 3500 (except renal disease < 274)		
Magnesium (mg)	> 300		
Iron (mg)	> 9		
Zinc (mg)	> 9.5		
Vit D (μg)	> 10		
Riboflavin (B2) (mg)	> 1.3		
Vit B6 (mg)	nr (1.3) ^c		
Folate (B9) (µg)	> 200		
Vit C (mg)	nr (40) ^c		

Mean intake in one UK hospital 1379 kcal & 44g protein
Barton et al (2000) Clin Nutr;

19:445-449

References:

^aFSA (2006) guidelines for nutrients for food provided to older people in residential care

^bMicronutrients : range of 1/3rd to 1/2 of daily RNI per supplemented mini meal.

^bMacronutrients: 1/6th of DRV per mini meal.

^cnr = no recommendation specified; but highlighted as low intake and/or deficient in older adults in two studies: (Bates et al 1999, *Br J Nutr* 82(1), 7-15; Russell & Suter 1993, *Am J Clin Nutr* 58(1), 4-14)

Can protein increase Muscle mass in Older Adults ?....evidence against

- n=80: WPC 40g/d or placebo, 6 m; resistance training (RT)
 - Lean Mass ↑ 1.3% / 0.6%; Muscle cross sectional area ↑ 4.6% / 2.9%
 - Muscle strength ↑ 16-50% both groups
 - Overall WPC no added benefit to RT

(Chale et al (2013): J. gerontology 68:682-690)

- n=65: protein 30g/d or placebo, 6 m; resistance training (RT)
 - Physical performance ↑
 - No change in muscle mass

(Tieland et al (2012): J Am Med Dir Assoc 13:720-726)

- n=60 : protein 15g/d or placebo, 6 m; resistance training (RT)
 - RT↑ muscle mass & strength
 - No further benefit from protein

(Leenders et al (2013): Med & Sci in Sports & Excersise 45:542-552

Can protein increase Muscle mass in Older Adults ?....evidence for

- n=33 males: acute consumption of labelled WP: 10, 20 or 35g
 - 35g protein led to ↑ aa absorption & protein synthesis

(Pennings et al (2012) Am J Physiol-Endocrinol Metab 302:E992-E999).

- n=106, nursing home: WP 20g/d in juice or placebo, 6 m
 - Body Wt : WP ↑ 2.1 % / control ↓ 1.9%
 - Skeletal mass maintained with WP / control ↓
- WP group needed less physical assistance (Bjorkman MP, Finne-Soveri H and Tilvis RS (2012) Whey protein supplementation in nursing home residents. A randomized controlled trial. Eur Geriatr Med 3:161-166).

Recent Meta-analysis (van Loons' Group)

Forest Plot of Changes in Fat free Mass:
Studies of protein supp + Resistance Training

Cermak NM, Res PT, de Groot L, Saris WHM and van Loon LJC (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. *American Journal of Clinical Nutrition* 96:1454-1464

Is Whey Protein the most beneficial Reading protein source?....evidence in younger adults

- Review of 9 studies
- Resistance training induced changes in muscle mass with protein supplements

Is Whey Protein the most beneficial Reading protein source?....evidence in older adults

- n=48 males: acute consumption of labelled casein, whey or casein hydrolysate (20g)
 - protein synthesis rate
 sig. greater from whey
 - Whey digested & absorbed faster & has more leucine

FIGURE 5. Mean (\pm SEM) mixed muscle protein fractional synthetic rates (FSR), with tissue-free L-[1-¹³C]phenylalanine enrichments as precursor, after ingestion of casein (CAS; n=16), casein hydrolysate (CASH; n=16), and whey (WHEY; n=16). Data were analyzed with ANOVA with Bonferroni correction. *WHEY significantly different from CAS, P < 0.01. *WHEY significantly different from CASH, P < 0.05.

8th NIZO Dairy Conference: Functional Enzymes for Dairy Applications

11–13 September 2013, Papendal, The Netherlands

Speaker

Luc van Loon

Abstract title: Milk protein and muscle maintenance

What do ONS provide?

6 – 10g protein / 100ml (portion 200ml)

Energy 100-200 kcal/100ml

Use Milk Protein Concentrates, WPC / WPI & Caseinates

Vitamins & Minerals 11 Vits & 13 minerals at ca. 40% DRV per portion

Why have other fortified products?

- Protein—energy ONS can have beneficial effects on body composition and nutritional status (Lauque et al., 2000)
- Compliance is poor (Gosney, 2003; Nolan 1999)
- Greatest wastage on elderly care wards where patients reported disliking the taste (72%) and sweetness (56%) (Gosney, 2003)
- What about providing other fortified meal opportunities?

Ice cream: an example of an "ONS" alternative

key benefits

- alternative oral nutritional supplement (ONS)
- higher in calories than standard ice cream
- vitamin, mineral and protein enriched
- "hard" rather than "soft" ice cream
- aiming for not too fast to melt!!

ice cream: an example of an "ONS" alternative

why did we developed this?

- ice cream often preferred to ONS beverage
- standard IC too low in calories to match an ONS
- mineral and vitamins in ice cream have less taste impact due to lower temperature
- older volunteers liked enhanced formulation as much as standard

nutritional information	standard IC (100ml)	mappmal IC (100ml)
Energy (kcal)	128	215
Protein (g)	3	5
Carbohydrates (g)	14	14
Fat (g)	7	15
Addition of Minerals / Vitamins	No	Yes (as for ONS beverage)

Cookies: making more of a traditional snack

key benefits

- alternative oral nutritional supplement (ONS)
- high in calories and adequate protein
- vitamin, mineral and protein enriched
- not too hard to bite
- not to leave too many dry particles in mouth (avoid choking)
- portion size: 40 g (2 biscuits)

Cookies:

nutritional information	standard digestive biscuit s (100g)	mappmal cookies (100g)
Energy (kcal)	470	517
Protein (g)	7	12
Fat (g)	22	32
Addition of Minerals / Vitamins	No	Yes

Tsikritzi,, Moynihan, Gosney, Allen, & Methven, L (2012), JSFA, in press

Challenges of WP Incorporation

- Stability:
 - pH : aggregation occurs when net charge ≅0 at pl
 - WP emulsions unstable at pH5 (esp heated)
 - As ↑ Ca : ↓pH; effecting stability
 - Use of WP + minerals in matrix can cause coagulation
- Taste: WPC / WPI have a distinct dairy flavour
- Mouth drying

Effect of Repeat Consumption of ONS: Sequential Profiling (Sensory panel)

- Sensory panel tasted 8 consecutive 5 ml shots of ONS
- Scored 5 attributes after each shot, and twice between shots as after effects
- Sweetness perception maintained over time.
- Metallic and Mouthdrying Perception build with time

The Drink makes you need a Drink!!

Mouth drying perception by older adults

Rennet whey mouth drying

- Heat treated Rennet Whey was compared to skimmed milk by older and younger adults
- Older Volunteers found rennet whey to be significantly more mouth drying than skimmed milk (p=0.03)
- Young volunteers found no significant difference between samples for mouth drying
- Suggests mouth drying is more important and easier to detect by older adults

What causes Whey Protein Mouth Drying?

- Some authors found ppt in mouth, but only in low pH systems
- ONS are near pH7...so not due to ppt
- Could the whey protein interact directly with the mucosa?

Mucoadhesion of milk proteins

- Mucoadhesion of pure milk proteins assessed by fluorescence microscopy
- Casein and
 β-Lactoglobulin both
 bound directly to
 porcine oral mucosa_{Casein}
- Mucoadhesion
 _{β-Lac}
 may play a role
 in perception of
 dairy mouth drying

Acknowledgements

- Dr Roussa Tsikritzi (UoR)
- Dr Caroline Withers (UoR)
- Prof Margot Gosney (UoR)
- Prof Paula Moynihan (UoN)
- Volunteers & Sensory Panel
- UoR Students

Please take a look at www.hospitalfoodie.com
Thank you!

