Whey pre-treatment for value added whey products

Ken Burgess

Whey pre-treatment for added value

- 1. UK whey products and processing challenges
- 2. Whey as a raw material and traditional p
- Producing a higher specification whey feed
- 4. Aspects of whey microbiology

Whey Technology & Utilisation

Whey based products: UK, 1980's to 2010's

Whey based

Whey powder
Demineralised whey
powder
Fat filled whey powder

Whey concentrate
Sweetened condensed
whey
Hydrolysed whey syrup
Demineralised, hydrolysed
whey

Whey Protein based

Delactosed whey WPC 35 WPC 50/60 WPC 76 WPC 80 WPI

Lactose based

Edible lactose
Refined edible lactose
Pharmaceutical lactose
Permeate powder

Commercial whey processing challenges

1. Financial

- economy of scale imperative
- energy intensity

2. Technical

- variability of whey source
- whey pre-treatment
- process performance
- variability in product performance

3. Marketing

 establishing markets where whey based products offer distinctive consumer benefits and real added value

Whey as a raw material

Milk & whey - similar but different

Composition

Physical structure

Microbiology

Milk & whey; Composition, %

Component	Sweet whey (range)*	Milk (typical UK)**
Water	93-94	87.1
Lactose	4.5-5	4.7
Protein	0.8-1.0	3.3
Fat	0.2-0.5	4.0
Ash	0.5-0.8	0.7
Cheese fines	0.05-0.30	-

^{*} from GEA

^{**} from SDT Dairy Handbook

Milk & whey; Structure

Traditional whey pre-treatment

- 1 Whey collecting tank
- 2 Plate heater
- 3 Rotating strainer
- 4 Fines collecting tank
- 5 Whey cream separator
- 6 Whey cream tank
- 7 Whey for further treatment

Courtesy of Tetra Pak

Whey pre-treatment for added value

Separation processes

Cheese solids

recovery

Curd fines Whey fat Status

Impact on whey

technology

Microbiology

Storage

Curd Fines: Measurement

Imhoff cone

Sediment

Dry solids

Curd fines and whey fat values

Cheese Vat	Curd fines (mg/kg)	Whey fat (%)	Reference
Vat 1	179	0.26	NIZO
Vat 2	145	0.28	NIZO
Vat 3	105	0.22	NIZO
Vat 4	97	0.26	NIZO
Vat 1	17-287	0.26-0.33	Moorepark
Vat 2	34-353	0.18-0.35	Moorepark
Vat 3	31-886	0.44-0.80	Moorepark

Curd fines: effect of pumping

Curd fines in vat (ml)	Curd fines after whey removal (ml)	Reference
1.75 - 2	4	Tetra Pak
1.75 - 2	3.5 - 4	Tetra Pak
2	6	KBA

Fines screens/sieves

Qualtech Curd Maximiser

Fines sieve typically recovers 30 to 60 % of the fines

Whey clarifier

Clarifier recovery approx. 85%

The Disk Centrifuge

Clarified whey curd fines mostly 15-30 mg/l (max 50 mg/l)

Whey pre-treatment for added value

Separation processes

Curd fines Whey fat Cheese solids recovery Impact on whey technology

Microbiology

Status

Storage

Whey fat: measurement

For whey fat:

Rose Gottlieb value > Gerber value

Rose Gottlieb

FTIR

Whey fat and curd fines values

Cheese Vat	Curd fines (mg/kg)	Whey fat (%)	Reference
Vat 1	179	0.26	NIZO
Vat 2	145	0.28	NIZO
Vat 3	105	0.22	NIZO
Vat 4	97	0.26	NIZO
Vat 1	17-287	0.26-0.33	Moorepark
Vat 2	34-353	0.18-0.35	Moorepark
Vat 3	31-886	0.44-0.80	Moorepark

Milk fat: fat structure

Whey fat: fat structure

De Wit	Johnston	Lipatov	Kamath & Morr
large proportion (c.50%) of small globules (<1µ)	small % in globular form	most of fat globules (98%) <2.5µ	LDLF (95%)
remainder of fat bound to proteinaceous	higher proportion of free fat	large proportion of fat globules (72%) <2µ	dispersed in non-lipid matrix
material enriched in	size of intact globules decreases during cheesemaking		MDLF (5%) clear fat
phospholipids and milk fat globule membrane material	Cheesemaking		HDLF (0.1%)
material			fat within a gel matrix

Centrifugation: Separation & Clarification

Whey fat: separation efficiency trend

Importance of separated whey fat

Whey
$$\longrightarrow$$
 30 X \longrightarrow WPC 80 6% solids \longrightarrow CF 25% solids

0.05%	0.06%	0.07%
fat	fat	fat
0.8%	1.0%	1.2%
fdm	fdm	fdm

1.50%	1.80%	2.10%
fat	fat	fat
6.0%	7.2%	8.4%
fdm	fdm	fdm

Whey pre-treatment for added value

Separation processes

Curd fines Whey fat Cheese solids recovery Impact on whey technology

Microbiology

Status

Storage

Whey microbiology: key genera in milk

Heat-resistant (survive 60 C for 20 min)	Thermoduric (survive 63 C for 30 min)	Spores (survive 80 C for 30 min)
Streptococcus faecalis	Microbacterium spp.	Bacillus spp. spores
Lactobacillus spp.	Micrococcus spp.	Clostridium spp. spores
Corynebacteria spp.	Alcaligenes spp.	

Dairy Powders & Concentrated Products, SDT Technical Series

Faecal streptococci: food context

- Enterococci or 'Lancefield Group D' streptococci
- Indicator of faecal contamination
- More persistent than coliforms (tolerant of 6.5% salt)

- Indicator of poor sanitation in dairy plant
- Concern over antibiotic resistance & gene transfer to pathogens
- 'Crossroads of food safety'

Faecal streptococci in whey

- Most resist 62.8°C for 30 minutes
- S.faecalis, S.faecium, S.durans in whey powder
- Part of raw & pasteurised milk microflora
- Naturally occur in whey
- Optimum growth at 42-44°C
- Growth markedly limited @ 5-8°C

Spore counts in pasteurised milk

B.cereus in whey study

Bacillus cereus in a whey process

Pirttijarvi et al, 1999

B.cereus in whey study

- *B.cereus* more prevalent in whey samples (26%) cf. raw milk (3%)
- B.cereus increased through process
- Evidence of B.cereus spores adhering to surfaces, & not fully removed by CIP

• Whey strains of *B.cereus* showed no growth < 8°C, with milk strains showing no growth < 5°C

Thermoduric bacteria in a WPC process

16S rRNA gene typing

Thermoduric bacteria in a WPC process

Extent	Thermoduric bacteria isolated
Dominant (all 4 stages)	Bacillus licheniformis, Microbacterium lacticus, Staphylococcus warneri, Enterococcus durans
Frequent (2 or more stages)	Bacillus subtilis, pumilus Staphylococcus haemolyticus, Micrococcus luteus
Whey/WPC	Bacilli, Staphylococci, Streptococci, Enterococcus faecalis, Enterococcus faecium Microbacterium phyllosphaerae, 9 other isolates

Whey handling for hygiene

- Control microbial load of the cheesemilk
- Pasteurise whey immediately after production
- Minimise holding time between whey production &
 - processing
- When holding whey, cool or hold hot
- Maintain same good cleaning &
 - disinfection practices for whey handling as for liquid milk

Whey storage: recommended conditions

Storage Condition	IDFA	GEA Niro	Harper	Jervis
Uncooled	< 2 hours	< 1 hour	'minimise'	-
Chilled storage	< 7°C	< 10°C (up to 10 hours)	< 4.4°C	< 5°C
Hot storage	>63°C	-	> 50°C (up to 6 hours)*	> 63°C

^{*} after 6 hours at > 50°C, changes in whey protein & growth of thermophiles

Whey pre-treatment: Summary

1. Milk & whey - similar but different

Curd fines & whey fat: context

Cheese solids recovery

Cheese solids recovery

Impact on whey technology

Whey microbiology

Whey microflora	Whey storage
Faecal streptococci	Strategy to control thermodurics
B.cereus	Key temperature is 8°C

Whey pre-treatment for added value

A concluding thought (Harper):

'Those who treat whey as an "orphan" by-product can expect to produce whey as only a relatively low-value commodity'

Thank You