

Developments in Membrane Technology

Process water, recovery and cost reduction

By Karsten Lauritzen, Head of Technology and R&D

- DSS Silkeborg
- Transport reduction and process water
- Milk recovery
- CIP Recovery
- Questions

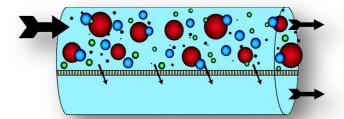
Company profile

Niels Osterland Managing Director

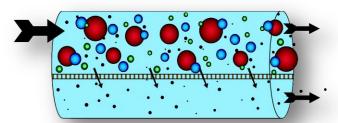
Orla Nissen MSc Dairy Technology BSc Dairy Technology Sales Director

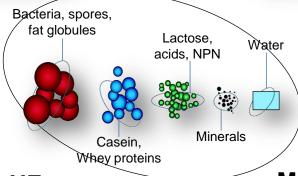
- Leading supplier of membrane filtration technology for the dairy industry worldwide
- Supplier to a wide range of the world's leading dairy companies
- Nearly 50 employees with up to 25 years' individual experience with membrane filtration and dairy processes
- Membranes and complete plants
- Project management and integration
- Service, troubleshooting and process optimisation
- Pilot plants, tests, development

To strengthen our present leading position within the area of development, design and supply of advanced membrane filtration systems and components for the dairy industry worldwide, always with due regard to people and environment

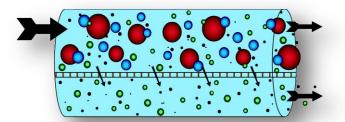


Based on a platform of know-how, product development, and our dedicated concern for people and environment we want to be recognized as the preferred worldwide supplier of a range of advanced liquid separation technologies.

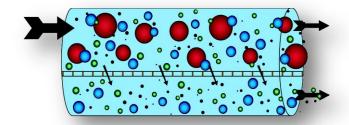




Reverse osmosis - RO



Nanofiltration - NF



Ultrafiltration - UF

Microfiltration - MF

Why choose DSS?

Competences and products

Research & Development

- Membranes

 (in co-operation with membrane manufacturers)
- Complete systems and processes (for all known dairy applications)
- New applications

Sales

- Analyse customer needs
- Identify optimal solutions
- Dimensioning, design, pricing
- International contracts

Project Management

- Engineering
- Procurement
- Assembling, installation
- Training, commissioning

After sales service

- Replacement membranes
- Service
- Trouble shooting
- Process optimisation
- Plant modifications

Applications

Whey

- Concentration
- **Demineralisation**
- WPC, WPI

Permeate

- Concentration (UF permeate)
- Demineralisation (UF permeate)
- Polishing (RO, NF permeate)

Milk

- Concentration
- Protein standardisation
- Casein standardisation
- MPC, MPI
- Feta, white cheeses
- Quark, cream cheese types

Other

- Water and product recovery
- Cheese brine purification
- Condensate polishing

24-hour service concept

Call us around the clock to order service, spares, and replacement membranes from:

- Alfa Laval
- Synder
- Koch
- Parker
- DOW Filmtec
- Hydranautics
- Microdyn-Nadir
- GE/Osmonics ... and more

+45 7070 1661

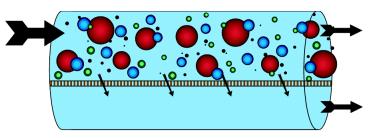
DSS reference list, selected references

- Arla Foods (DK, S, F, RU)
- Skånemejerier (S)
- Tine (N)
- Goldsteig (D)
- Lactoprot (D)
- Milei (D)
- Nordmilch (D)
- Armor Proteines/Bongrain (F, SK, B)
- Lactalis (F, CZ, KZ)
- Inalco/GLT (Latina) (I)
- Kraft Foods (D, I, E)

DSS reference list, selected references

- Borculo Domo Ingredients (NL)
- DOC Kaas (NL)
- Friesland Foods (NL)
- Belgomilch (B)
- Dairy Gold (IRL)
- Glanbia (IRL)
- Kerry Ingredients (IRL)
- Murray Goulburn (AUS)
- Fonterra (NZ)
- Westland (NZ)
- Yili (CN)
- Wimm-Bill-Dann (RUS)

TRANSPORT REDUCTION AND PRODUCTION OF PROCESS WATER



Concentration of Dairy products by RO

RO at 35 bar

Dairy product

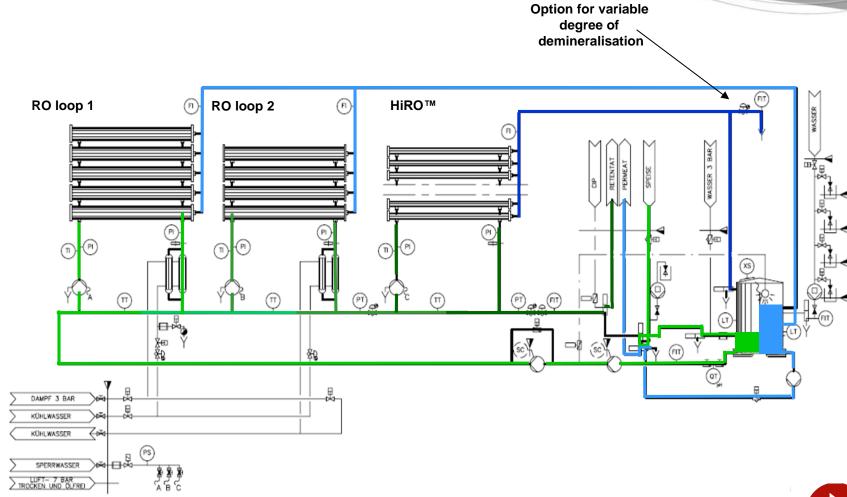
Concentrate

RO-permeate - "Water"

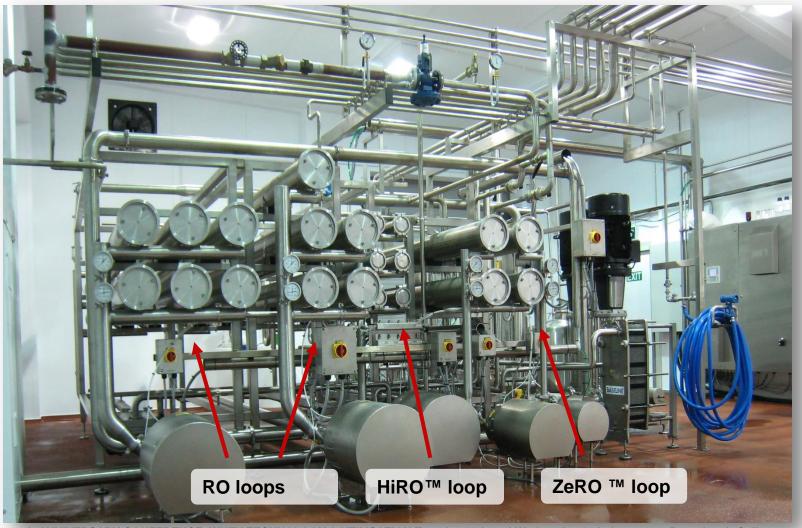
Dairy Products and Concentrates

Feed	Typical Total Solid (TS)	Concentrate max. TS	Operation between CIP
Sweet UF permeate	5,5 %	25 %	20 hrs
Acid UF permeate	5,8 %	22 %	20 hrs
Sweet whey	6,0 %	30 %	20 hrs
Acid whey	6,5 %	22 %	10 hrs
Skim milk	9,2 %	26%	20 hrs
Whole milk	12,3 %	30%	20 hrs

Transport reduction by RO concentration


Case	Whole Milk	Sweet Whey	
Feed Vol. (kg/day)	1.000.000	1.000.000	
Truck loads pr. day	34	34	
Concentrate (kg/day)	410.000	200.000	
Truck loads pr. day	14	7	
Transport Reduction	59 %	80 %	
Water (m ³ /day)	590	800	

 $1 \log d = 30.000 \text{ kg}$



HiRO™ Whey concentration plant

MILK RECOVERY

Definition of milk flush water

Milk flush water is the first flush water in cleaning, containing a mixture of milk and water

Milk flush water typically contains 1/3 milk and 2/3 water

Applications:

- > Raw milk flush water from road tankers and milk silos
- ➤ Pasteurized flush water from pipes, pasteurizers, milk silos and filling machines
- ➤ A modern dairy typically wastes around 0.5% to 1% of the total milk volume in flush operations.

What is the interesting aspects?

Legal aspect

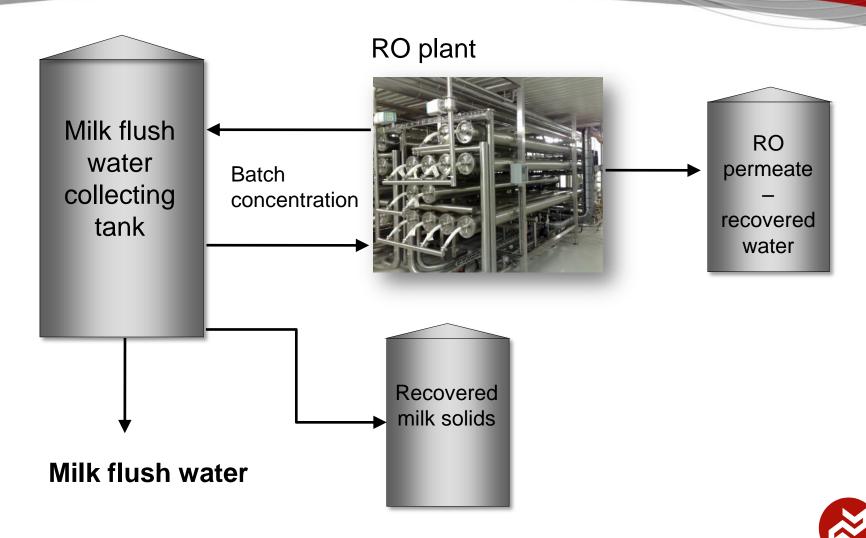
Possible re-use of concentrate to consumer products

Environmental aspect

Environmental responsibility, green profile

Financial aspects

- Cost of raw material (milk price)
- Waste water treatment / effluent cost
- Cost of water


Technical aspect

Composition of milk flush water

Milk Recovery proces (batch)

Typical composition of milk flush water

Typical composition of milk flush water		
Fat free milk solids	2-6%	
Fat	0-6 %	

Typical composition of milk flush water permeate		
Total solids	<0.1%	
COD approx.	150 ppm	

Typical composition of milk flush water retentate		
Total Solids Non Fat	8-10%	
Total solids	12-20%	

Case study – Milk Recovery

2 plants in Scandinavia:

Milk reception Dairy factory A

- 500,000+ I/day
- Medium milk volume
- Daily volume of diluted milk:
 17,000 litres

Milk reception Dairy factory B

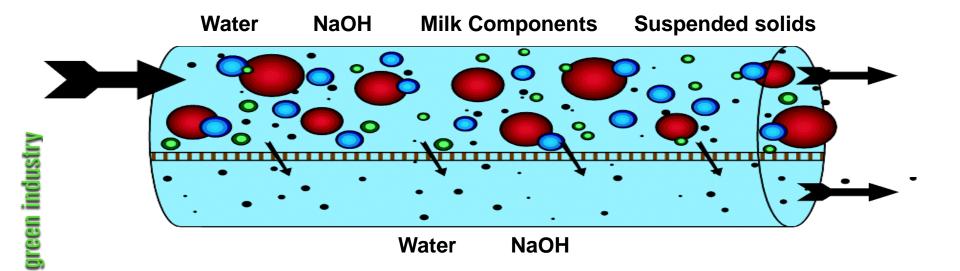
- 1,000,000+ I/day
- Large milk volume
- Daily volume of diluted milk:
 35,000 litres

Case study – facts and figures

	Dairy factory A	Dairy factory B
Daily volume of milk flush water (litres)	17,000	35,000
Milk solids in feed product (%)	4.0	4.0
Milk solids in retentate (%)	12.24	14.16
Recovered milk/day (kgs)	5,533	9,839
Investment (EUR)	200,000	350,000
Cost of operation and capital (EUR)	84,000	146,000
Annual profit (EUR)	555,000	1,059,000
Payback period/ ROI (months)	7	6
Based on 350 production days and a milk price per kg of	0.33	0.35

Benefits of Milk Recovery

- ➤No waste of milk
- ➤ Significantly reduced discharge of waste water
- >Re-use of water
- > Reduced environmental impact
- ➤ Very short payback period



CIP RECOVERY

CIP Recovery

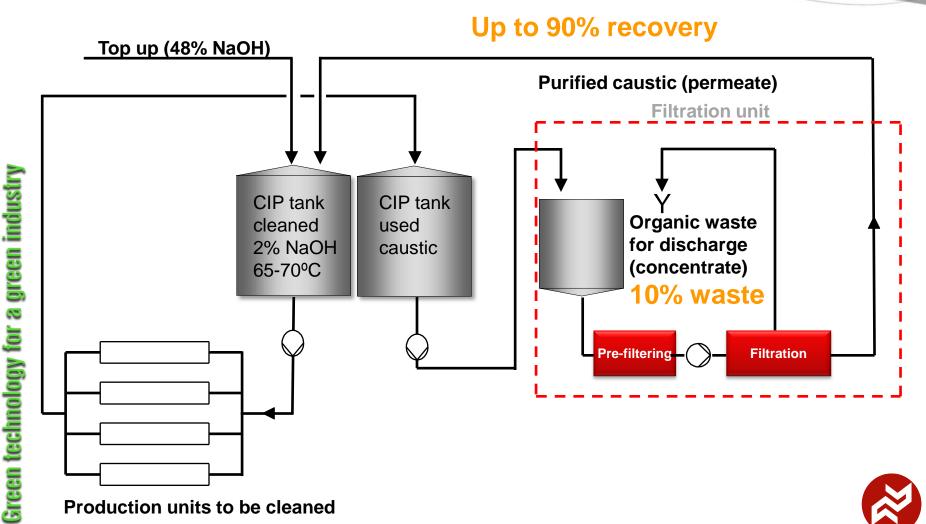
Protein, fat, lactose and suspended solids are retained and concentrated.

Caustic soda solution can pass through the membranes

CIP recovery – the product and process

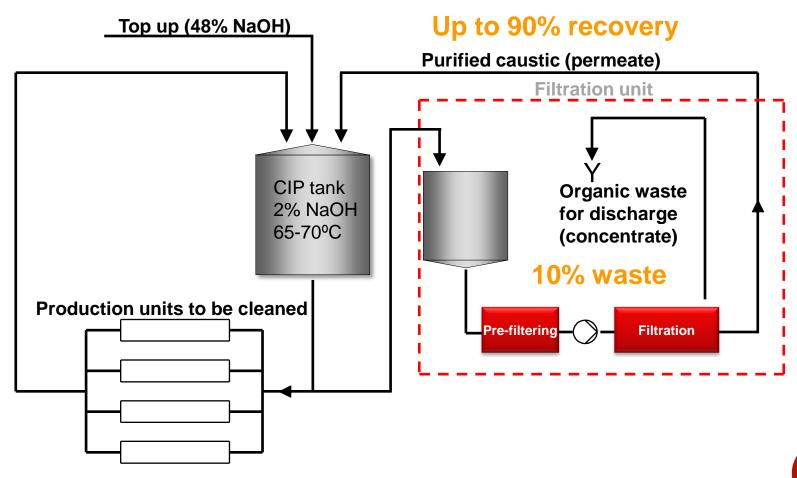
Used Caustic from milk evaporator

The final concentrate after VCF 10

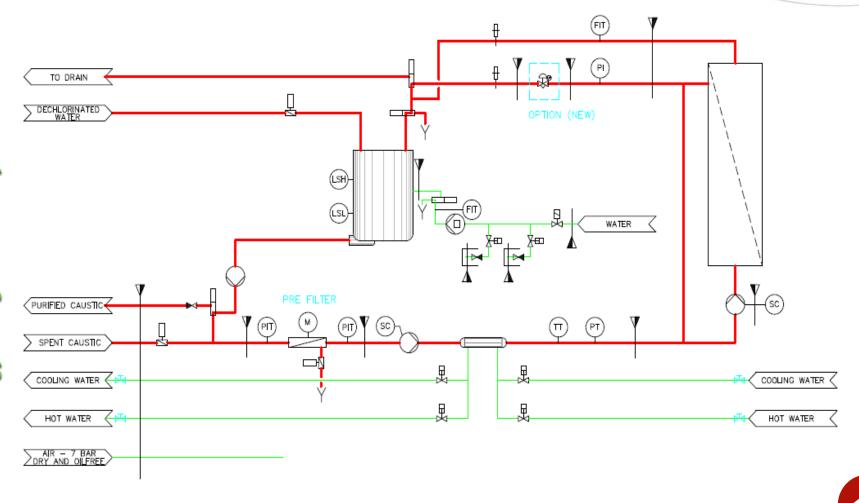


Purification of spent CIP solutions

- Organic membrane
 - MW cut off: 150 300
 - expected membrane lifetime: minimum 1 year
- Limits
 - max 40 bar
 - pH 0-14
 - max temperature: 70°C
 - chlorine: 0 ppm
- Typical results
 - minimum 90% COD retention
 - 93% lactose retention



CIP recovery – continuous system


CIP recovery – batch system

Green technology for a green industry

CIP recovery – example of CIP Recovery plant flow sheet

Advantages of CIP Recovery

- Up to 90% recovery of Caustic = huge savings in detergent consumption
- Up to 90% savings in water consumption = protection of natural resources
- Significant reduction of waste water discharge
- Reduced requirement for heating = energy saving
- Short payback period
- Improved environmental conditions = green profile
- Available as batch and continuous systems
- Stand-alone or integrated control systems

Note: Pilot tests are normally required in order to define exact filtration plant configuration

Questions!

